巨大数研究 Wiki

定義済み[]

大SZNO数列システム(LSZNOSs)[]

\(BW+SZNO(=SpS+SZNO×2)\)

表記[]

\((a_0,a_1,a_2...a_k)[n]\)

サブルール[]

  • 大小関係
\(A<B⇔∃C[((A<C)∨(A=C))∧(∃c[(\text{ex}(B,c)=C)])]\)

※\(A、B、C\)は列

  • 展開

列\(S=(s_0,s_1,s_2...s_m)\)と自然数\(b\)に対して\(\text{ex}(S,b)\)を以下の通り定義する。

  • \(q(0)=\begin{cases}Max\{c|s_{c-1}=s_m-2\}&\text{if} ∃c\\0&\text{otherwise}\end{cases}\)
  • \(q(c+1)=min\{d|(q(c)<d)∧(s_d=s_m-1)\}\)
  • \(l=Max\{c|q(c)=Max\{d|s_d=s_m-1\}\}\)
  • \(S_c=(s_{q(c)},s_{q(c)+1},s_{q(c)+2}...s_{q(c+1)-1})\)
  • \(S_l=(s_{q(l)},s_{q(l)+1},s_{q(l)+2}...s_m)\)
  • \(i=\begin{cases}Max\{q(c)|S_c<S_l\}&\text{if} ∃q(c)\\q(0)&\text{otherwise}\end{cases}\)
  • \(A=(s_0,s_1,s_2...s_{i-1})\)
  • \(B=(s_i,s_{i+1},s_{i+2}...s_{m-1})\)
  • \(\text{ex}(S,b)=A\frown\underbrace{B\frown B\frown B...B}_b\)

計算法[]

rule1:\((0)[n]=n+1\)
rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
rule3:\(\text{ex}((a_0,a_1,a_2...a_k),n)[n]\)

評価[]

(0,1)=\({\omega}={\beta_0(1)}\)
(0,1,0,0,1)=\({\omega×2}={\beta_0(1,0,1)}\)
(0,1,0,1)=\({\omega^2}={\beta_0(1,1)}\)
(0,1,1)=\({\omega^{\omega}}={\beta_0(2)}\)
(0,1,1,0,1,0,1,1)=\({\omega^{\omega×2}}={\beta_0(2,1,2)}\)
(0,1,1,0,1,1)=\({\omega^{\omega^2}}={\beta_0(2,2)}\)
(0,1,2)=\({\varepsilon_0}={\beta_0({\omega})}={\beta_0({\beta_0(1)})}\)
(0,1,2,1)=\({\psi_0({\omega})}={\beta_0({\beta_0(1,0)})}\)
(0,1,2,1,2)=\({\psi_0({\Omega})}={\beta_0({\beta_0(1,1)})}\)
(0,1,2,2)=\({\psi_0({\Omega^{\omega}})}={\beta_0({\beta_0(2)})}\)
(0,1,2,3)=\({\psi_0({\Omega^{\psi_0(0)}})}={\beta_0({\beta_0({\beta_0(1)})})}\)
(0,1,2,3,...n)=\({\psi_0({\Omega^{\Omega}})}={\beta_0({\Omega})}\)

小偽原始数列システム(SPpSs)[]

表記[]

\((a_0,a_1,a_2...a_k)[n]\)

定義[]

rule1:\((0)[n]=n+1\)
rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
rule3:
  • \(i=Max\{b|a_b=0\}\)
  • \(A=(a_0,a_1,a_2...a_{i-1})\)
  • \(B=(a_i,a_{i+1},a_{i+2}...a_{k-1})\)
  • \((a_0,a_1,a_2...a_k)[n]=A\frown \underbrace{B\frown B\frown...B}_n[n]\)

評価[]

(0,1,2,3...)=\({\omega^{\omega}}\)

小偽行列システム(SPMs)[]

表記[]

  • \(S_x=(a_{x,0},a_{x,1}...a_{x,m})\)
  • 正規形:\(S_0S_1S_2...S_k[n]\)

定義[]

rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1S_2...S_{k-1}Z[n]=S_0S_1S_2...S_{k-1}[n+1]\)
rule3:
  • \(i=Max\{b|(b<k)∧(∀c[(0<a_{k,c})⇒(a_{b,c}<a_{k,c})])∧(∃d[(0<a_{k,d})∧(a_{b-1,d}≥a_{b,d})])\}\)
  • \({\Delta}=(d_0,d_1,d_2...d_m)\)
  • \(d_b=\begin{cases}a_{i,b}-a_{k,b}&\text{if}(0<a_{k,b+1})∧(b<m)\\0&\text{otherwise}\end{cases}\)
  • \(A=S_0S_1S_2...S_{i-1}\)
  • \(B_0=S_iS_{i+1}S_{i+2}...S_{k-1}\)
  • \(B_{b+1}=B_b+{\Delta}\)
\(S_0S_1S_2...S_k[n]=AB_0B_1B_2...B_n[n]\)

評価[]

(0,0)(1,1)=\({\omega^{\omega}}\)
(0,0)(1,1)(2,0)=|(0,0)(1,1)|(0,0)(1,1)|(0,0)(1,1)|...=\({\omega^{\omega+1}}\)
(0,0)(1,1)(2,0)(3,1)=(0,0)(1,1)|(2,0)|(3,0)|(4,0)|...=\({\omega^{\omega×2}}\)
(0,0)(1,1)(2,2)=|(0,0)(1,1)|(2,0)(3,1)|(4,0)(5,1)|...=\({\omega^{\omega^2}}\)
(0,0)(1,1)(2,2)(3,0)=\({\omega^{\omega^2+1}}\)
(0,0)(1,1)(2,2)(3,0)(4,1)=\({\omega^{\omega^2+{\omega}}}\)
(0,0)(1,1)(2,2)(3,0)(4,1)(5,2)=\({\omega^{\omega^2×2}}\)
(0,0)(1,1)(2,2)(3,3)=\({\omega^{\omega^3}}\)
(0,0,0)(1,1,1)=\({\omega^{\omega^{\omega}}}\)
(0,0,0)(1,1,1)(2,0,0)=\({\omega^{\omega^{\omega}+1}}\)
(0,0,0)(1,1,1)(2,0,0)(3,1,1)=\({\omega^{\omega^{\omega}×2}}\)
(0,0,0)(1,1,1)(2,2,0)=\({\omega^{\omega^{\omega+1}}}\)
(0,0,0)(1,1,1)(2,2,0)(3,3,1)=\({\omega^{\omega^{\omega×2}}}\)
(0,0,0)(1,1,1)(2,2,2)=\({\omega^{\omega^{\omega^2}}}\)
(0,0,0,0)(1,1,1,1)=\({\omega^{\omega^{\omega^{\omega}}}}\)
(0,0,0...0)(1,1,1...1)=\({\varepsilon_0}\)

​大偽原始数列システム(LPpSs)[]

​表記[]

\((a_0,a_1,・・・a_k)[n]\)

​計算法[]

(1)\((\#,0)[n]=(\#)[n+1]\)

(2)\(a_{i-1}≥a_i\)かつ\(i<k\)かつ\(a_i<a_k\)を満たす最大の\(i\)を\(j\)とする(iが存在しない場合、j=0とする)。

  • \(A=(a_0,a_1,・・・a_{j-1})\)
  • \(B_0=(a_j,a_{j+1},・・・a_{k-1})\)
  • \(x=a_k-a_j-1\)
  • \(B_m=B_0+(x×m)\) (\(B_0\)のすべての項に足す)

\((a_0,a_1,・・・a_k)[n]=\{A\frown B_0\frown B_1\frown...B_n\}[n+1]\)

​評価[]

(0,1)=(0[1])=\({\omega}\)
(0,1,0,1)=(0[1],0[1])=\({\omega×2}\)
(0,1,1)=(0[1],1)=\({\omega^2}\)
(0,1,1,2)=(1[1],1[1])=\({\omega^{\omega}}\)
(0,1,1,2,1)=(0[1],1[1],1)=\({\omega^{\omega+1}}\)
(0,1,1,2,1,2)=(0[1],1[1],1[1])=\({\omega^{\omega×2}}\)
(0,1,1,2,2)=(0[1],1[1],2)=\({\omega^{\omega^2}}\)
(0,1,1,2,2,3)=(0[1],1[1],2[1])=\({\omega^{\omega^{\omega}}}\)
(0,1,2)=(0[1,1])=\({\varepsilon_0}\)
(0,1,2,1)=(0[1,1],1)=\({\varepsilon_0×{\omega}}\)
(0,1,2,1,2,3)=(0[1,1],1[1,1])=\({\varepsilon_0^2}\)
(0,1,2,1,2,3,2)=(0[1,1],1[1,1],2)=\({\varepsilon_0^{\omega}}\)
(0,1,2,1,2,3,2,3,4)=(0[1,1],1[1,1],2[1,1])=\({\varepsilon_0^{\varepsilon_0}}\)
(0,1,2,2)=(0[1,1],2)=\({\varepsilon_1}\)
(0,1,2,2,3)=(0[1,1],2[1])=\({\psi({\omega})}\)
(0,1,2,2,3,4)=(0[1,1],2[1,1])=\({\psi({\psi(0)})}\)
(0,1,2,2,3,4,4,5,6)=(0[1,1],2[1,1],4[1,1])=\({\psi({\psi({\psi(0)})})}\)
(0,1,2,3)=(0[1,1,1])=\({\psi({\Omega})}\)
(0,1,2,・・・n)=(0[1,1,...1])=\({\psi({\Omega^{\omega}})}\)

※限界は(0,2,3,4,・・・n)=(0[2,1,1,...1])=\({\psi({\Omega^{\omega}×2})}\)だと思われる。

新LPpS[]

表記[]

\((a_0,a_1,a_2...a_k)[n]\)

定義[]

rule1:\((0)[n]=n+1\)
rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1},0)[n+1]\)
rule3:
  • \(i=\begin{cases}k-1&\text{if} a_k-a_{k-1}=1\\Max\{b|(a_b<a_k)∧(a_{b-1}≥a_b))\}&\text{otherwise}\end{cases}\)
  • \(A=(a_0,a_1,a_2...a_{i-1})\)
  • \(B_b=(a_i,a_{i+1},a_{i+2}...a_{k-1})+(a_k-a_i)×b\)
  • \((a_0,a_1,a_2...a_k)[m]=A\frown B_0\frown B_1\frown B_2...B_n[n]\)

評価[]

(0,1,2)=(0|1|1|1|...)=\({\omega^{\omega}}\)
(0,1,2,2)=(|0,1,2|1,2,3|2,3,4|...)=\({\varepsilon_0}\)
(0,1,2,2,2)=\({\varepsilon_1}\)
(0,1,2,3)=\({\psi_0({\omega})}\)
(0,1,2,3,2)=\({\psi_0({\omega+1})}\)
(0,1,2,3,2,3,4,5)=\({\psi_0({\psi_0({\omega})})}\)
(0,1,2,3,3)=\({\psi_0({\Omega})}\)
(0,1,2,3,3,2)=\({\psi_0({\Omega+1})}\)
(0,1,2,3,3,2,3,4,5,5)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
(0,1,2,3,3,3)=\({\psi_0({\Omega×2})}\)
(0,1,2,3,4)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,2,3,4,3,4,5,6,7)=\({\psi_0({\Omega×{\psi_0({\Omega×{\omega}})}})}\)
(0,1,2,3,4,4)=\({\psi_0({\Omega^2})}\)
(0,1,2...)=\({\psi_0({\Omega^{\omega}})}\)

大偽行列システム(LPMs)[]

表記[]

  • \(k,m,n:\)自然数
  • \(a_{x,y}:\)非負整数
  • \(S_x=(a_{x,0},a_{x,1},...a_{x,m})\)


  • 正規形\(:S_0,S_1,...S_k[n]\)

定義[]

  • \(Z:\)零ベクトル
  • \(b,c,e,x,y:\)非負整数
rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
rule3:
  • \(dim(x)=Max\{b|a_{x,b}>0\}\)
  • \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
  • \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})∧(∃c[p_y^c(x)=b])\}\)
  • \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
  • \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
\(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
  • \(r=\begin{cases}Max\{b|∀y,y≥dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\\\Max\{b|(∀y,y≥dim(k)[∃c[P_y^c(k)=b]])∨\\((∀y,y≥dim(k)[∃c[p_y^c(k)=b]])∧(∃c[(c>dim(k))∧\\(p_c(b)≠b-1)∧(a_{b,c}>0)]))\}&\text{otherwise}\end{cases}\)
  • \({\Delta}=D_0D_1...D_{k-1-r}\)
  • \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
  • \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,y}-a_{r,y}-1&\text{if} y=dim(k)\\0&\text{otherwise}\end{cases}\)
  • \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
  • \(A=S_0S_1...S_{r-1}\)
  • \(B_0=S_rS_{r+1}...S_{k-1}\)
  • \(B_b=B_0+b×{\Delta}\)
\(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)

評価[]

(0,0)(1,1)\(={\psi_0({\Omega^{\omega}})}\)
(0,0)(1,1)(1,1)=|(0,0)(1,1)|(1,0)(2,1)|(2,0)(3,1)|...\(={\psi_0({\Omega^{\omega}+1})}\)
(0,0)(1,1)(2,0)=(0,0)|(1,1)|(1,1)|(1,1)|...\(={\psi_0({\Omega^{\omega}+{\omega}})}\)
(0,0)(1,1)(2,0)(2,0)=|(0,0)(1,1)(2,0)|(1,0)(2,1)(3,0)|(2,0)(3,1)(4,0)|...\(={\psi_0({\Omega^{\omega}+{\omega+1}})}\)
(0,0)(1,1)(2,0)(3,1)=(0,0)(1,1)|(2,0)|(3,0)|(4,0)|...\(={\psi_0({\Omega^{\omega}×2})}\)
(0,0)(1,1)(2,1)\(={\psi_0({\Omega^{\omega}×{\omega}})}\)
(0,0)(1,1)(2,1)(2,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega}})}\)
(0,0)(1,1)(2,1)(3,0)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega×{\omega}}})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega×{\omega^{\omega}}}})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(3,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^2}})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(2,1)(3,0)(4,0)(3,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^2×2}})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(3,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^3}})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(4,0)\(={\psi_0({\Omega^{\omega}×({\omega+1})})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(4,0)(3,1)\(={\psi_0({\Omega^{\omega+1}})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(4,0)(5,0)(4,1)\(={\psi_0({\Omega^{\Omega}})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(4,0)\(={\psi_0({\psi_1(0)})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(5,0)\(={\psi_0({\psi_1({\omega})})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(4,1)\(={\psi_0({\psi_1({\Omega})})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(4,1)(5,0)(6,0)(6,0)\(={\psi_0({\psi_1({\psi_1(0)})})}\)
(0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(5,0)\(={\psi_0({\psi_1({\Omega_2})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}+1})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}+{\Omega}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,0)(4,1)(5,0)(6,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}+{\psi_1({\Omega_2^{\omega}})}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,0)(5,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}+{\Omega_2}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+1})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(5,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(5,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\Omega}}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\Omega×{\omega}}}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,0)(7,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\psi_1(0)}}})})}\)
(0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\psi_1({\Omega_2^{\omega}×{\omega}})}}})})}\)
(0,0)(1,1)(2,1)(3,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})})}\)
(0,0)(1,1)(2,1)(3,1)(2,1)(3,1)=|(0,0)(1,1)(2,1)(3,1)(2,1)|(3,0)(4,1)(5,1)(6,1)(5,1)|(6,0)(7,1)(8,1)(9,1)(8,1)|...
(0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})×2})}\)
(0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2+1}})})}\)
(0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(4,1)(5,0)(6,1)(7,1)(8,1)
\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}+{\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})}})})}\)
(0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2+{\Omega_2}}})})}\)
(0,0)(1,1)(2,1)(3,1)(2,1)(3,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×2}})})}\)
(0,0)(1,1)(2,1)(3,1)(3,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×{\omega}}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×{\Omega^{\omega}}}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×{\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})}}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^3}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)(2,1)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^3×2}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^4}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×({\omega+1})})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)(4,0)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega+1}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\Omega}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)(5,0)(6,0)(6,0)\(={\psi_0({\psi_1({\Omega_2^{\psi_1(0)}})})}\)
(0,0)(1,1)(2,1)(3,1)(4,1)(5,1)\(={\psi_0({\psi_1({\Omega_2^{\Omega_2}})})}\)
(0,0)(1,1)(2,2)\(={\psi_0({\psi_1({\psi_2(0)})})}\)
(0,0)(1,1)(2,2)(2,2)\(=|(0,0)(1,1)(2,2)|(2,1)(3,2)(4,3)|(4,2)(5,3)(6,4)|...\)
(0,0)(1,1)(2,2)(2,1)(3,1)\(={\psi_0({\psi_1({\psi_2(0)}+{\Omega_2^2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)\(={\psi_0({\psi_1({\psi_2(0)×2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)\(={\psi_0({\psi_1({\psi_2(0)^2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(3,2)\(={\psi_0({\psi_1({\psi_2(1)})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,0)\(={\psi_0({\psi_1({\psi_2({\omega})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(4,0)\(={\psi_0({\psi_1({\psi_2({\omega+1})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,0)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,0)(4,1)(5,2)\(={\psi_0({\psi_1({\psi_2({\psi_1({\psi_2(0)})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,0)(5,0)\(={\psi_0({\psi_1({\psi_2({\Omega_2})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,1)\(={\psi_0({\psi_1({\psi_2({\Omega_2^{\omega}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,1)(6,1)\(={\psi_0({\psi_1({\psi_2({\Omega_2^{\omega}×{\omega}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,1)(5,2)\(={\psi_0({\psi_1({\psi_2({\psi_2(0)})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})})}+{\Omega})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})})}×2)}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)(4,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+1)})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+{\Omega})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)(5,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+{\Omega_2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+{\Omega_2^2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,2)(4,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})×2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}×{\Omega})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)(4,0)(5,1)(6,2)(6,1)(7,2)(8,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}×{\psi_1({\psi_2({\Omega_3})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}×{\Omega_2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})^2})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3+1})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3+{\Omega}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,1)(5,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3+{\Omega_2}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3×2})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\omega}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\Omega}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)(6,0)(7,1)(8,2)(8,1)(9,2)(10,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\psi_1({\psi_2({\Omega_3})})}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)(6,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\Omega_2}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)(6,2)(6,1)(7,2)(8,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\psi_2({\Omega_3})}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3^2})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(6,0)\(={\psi_0({\psi_1({\psi_2({\psi_3(0)})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,1)(7,0)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4}})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,1)(7,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega}}})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,2)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}+{\Omega_4×{\psi_1({\psi_2(0)})}}})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(4,2)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}+{\Omega_3})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(4,2)(5,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})×2})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,0)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}×{\Omega^{\omega}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})×{\Omega_2}})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,2)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}×{\psi_2(0)})})})}\)
(0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,2)(7,2)(8,0)(9,1)
\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}×{\psi_2({\psi_3({\Omega_4^{\omega}})})})})})}\)


(0,0)(1,1)(2,2)(2,2)\(={\psi_0({\Omega_{\omega}})}=B(0,0,0)(1,1,1)\)
(0,0)(1,1)(2,2)(3,0)\(={\psi_0({\Omega_{\omega}×{\omega}})}\)
(0,0)(1,1)(2,2)(3,2)\(={\psi_0({\Omega_{\omega}×{\omega+1}})}\)
(0,0)(1,1)(2,2)(3,2)(4,0)\(={\psi_0({\Omega_{\omega}×{\omega×2}})}\)
(0,0)(1,1)(2,2)(3,2)(4,0)(3,2)\(={\psi_0({\Omega_{\omega}×({\omega×2+1})})}\)
(0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(5,0)=(0,0)(1,1)(2,2)|(3,2)(4,0)(5,0)|(4,2)(5,0)(6,0)|(6,2)(7,0)(8,0)|...
(0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,1)\(={\psi_0({\Omega_{\omega}×{\Omega}})}\)
(0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,1)(3,2)=|(0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,1)|(3,1)(4,2)(5,3)(6,3)(7,0)(8,0)(7,2)|...
\(={\psi_0({\Omega_{\omega}^2})}=\)B(0,0,0)(1,1,1)(2,1,0)(1,1,1)
(0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,2)=B(0,0,0)(1,1,1)(2,1,1)
(0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(5,0)=B(0,0,0)(1,1,1)(2,2,0)
(0,0)(1,1)(2,2)(3,2)(4,0)(5,1)=B(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,0,0)

m-有限行列システム(m-FMs)[]

表記[]

  • \(k,m,n:\)自然数
  • \(a_{x,y}:\)非負整数
  • \(S_x=(a_{x,0},a_{x,1},...a_{x,m})\)


  • 正規形\(:S_0,S_1,...S_k[n]\)

定義[]

  • \(Z:\)零ベクトル
  • \(b,c,e,x,y:\)非負整数
rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
rule3:
  • \(dim(x)=Max\{b|a_{x,b}>0\}\)
  • \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
  • \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
\(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
  • \(r=Max\{b|∀y,y≥dim(k)[∃c[P_y^c(k)=b]]\}\)
  • \({\Delta}=D_0D_1...D_{k-1-r}\)
  • \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
  • \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,dim(k)}-a_{r,dim(k)}-1&\text{if} y≥dim(k)\\0&\text{otherwise}\end{cases}\)
  • \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
  • \(A=S_0S_1...S_{r-1}\)
  • \(B_0=S_rS_{r+1}...S_{k-1}\)
  • \(B_b=B_0+b×{\Delta}\)
\(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)

評価[]

  • m=1
(0,0)(1,0)(2,0)(3,0)=|(0,0)(1,0)(2,0)|(2,2)(3,0)(4,0)|(4,4)(5,0)(6,0)|...
(0,0)(1,0)(2,0)(2,2)(3,0)(4,0)=(0,0)(1,0)(2,0)|(2,2)(3,0)|(3,3)(4,0)|(4,4)(5,0)|...
(0,0)(1,0)(2,0)(2,2)(3,0)(3,2)=|(0,0)(1,0)(2,0)(2,2)(3,0)|(3,1)(4,0)(5,0)(5,3)(6,0)|(6,2)(7,0)(8,0)(8,4)(9,0)|...
(0,0)(1,0)(2,0)(2,2)=|(0,0)(1,0)(2,0)|(2,1)(3,0)(4,0)|(4,2)(5,0)(6,0)|...
(0,0)(1,0)(2,0)(2,1)(3,0)(4,0)=(0,0)(1,0)(2,0)|(2,1)(3,0)|(3,2)(4,0)|(4,3)(5,0)|...
(0,0)(1,0)(2,0)=|(0,0)(1,0)|(1,1)(2,0)|(2,2)(3,0)|...=B(0,0,0)(1,1,1)
(0,0)(1,0)(2,0)(2,0)(3,0)=B(0,0,0)(1,1,1)(2,0,0)
(0,0)(1,0)(2,0)(2,1)=B(0,0,0)(1,1,1)(2,1,0)
(0,0)(1,0)(2,0)(2,1)(2,1)=B(0,0,0)(1,1,1)(2,1,0)(1,1,1)(2,1,0)
(0,0)(1,0)(2,0)(2,1)(3,0)=B(0,0,0)(1,1,1)(2,1,0)(2,0,0)
(0,0)(1,0)(2,0)(2,1)(3,0)(3,1)=B(0,0,0)(1,1,1)(2,1,0)(2,1,0)
(0,0)(1,0)(2,0)(2,1)(3,0)(3,1)(4,0)=B(0,0,0)(1,1,1)(2,1,0)(3,0,0)
(0,0)(1,0)(2,0)(2,1)(3,0)(3,2)=B(0,0,0)(1,1,1)(2,1,0)(3,2,0)
(0,0)(1,0)(2,0)(2,1)(3,0)(4,0)=B(0,0,0)(1,1,1)(2,1,0)(3,2,1)
(0,0)(1,0)(2,0)(2,2)=B(0,0,0)(1,1,1)(2,1,1)
(0,0)(1,0)(2,0)(2,2)(2,0)=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)
(0,0)(1,0)(2,0)(2,2)(2,1)=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,0)
(0,0)(1,0)(2,0)(2,2)(2,2)=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,1)
(0,0)(1,0)(2,0)(2,2)(3,0)=B(0,0,0)(1,1,1)(2,1,1)(2,0,0)
(0,0)(1,0)(2,0)(2,2)(3,0)(3,1)=B(0,0,0)(1,1,1)(2,1,1)(2,1,0)
(0,0)(1,0)(2,0)(2,2)(3,0)(3,2)=B(0,0,0)(1,1,1)(2,1,1)(2,1,1)
(0,0)(1,0)(2,0)(2,2)(3,0)(3,3)=B(0,0,0)(1,1,1)(2,2,0)
(0,0)(1,0)(2,0)(2,2)(3,0)(4,0)=B(0,0,0)(1,1,1)(2,2,0)(3,3,1)
(0,0)(1,0)(2,0)(3,0)=B(0,0,0)(1,1,1)(2,2,1)
(0,0)(1,0)(2,0)(3,0)(2,2)(3,0)(4,0)(5,0)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,0)(3,3,1)
(0,0)(1,0)(2,0)(3,0)(3,0)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,1)
(0,0)(1,0)(2,0)(3,0)(3,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)
(0,0)(1,0)(2,0)(3,0)(3,1)(3,0)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(1,1,1)(2,2,1)
(0,0)(1,0)(2,0)(3,0)(3,1)(4,0)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(2,0,0)
(0,0)(1,0)(2,0)(3,0)(3,1)(4,0)(4,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(2,1,0)
(0,0)(1,0)(2,0)(3,0)(3,1)(4,0)(5,0)(6,0)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(3,2,1)(4,3,1)
(0,0)(1,0)(2,0)(3,0)(3,2)=B(0,0,0)(1,1,1)(2,2,1)(2,1,1)

大偽大偽行列システム(LPLPMs)[]

表記[]

  • \(k,m,n:\)自然数
  • \(a_{x,y}:\)非負整数
  • \(S_x=(a_{x,0},a_{x,1},...a_{x,m})\)


  • 正規形\(:S_0,S_1,...S_k[n]\)

定義[]

  • \(Z:\)零ベクトル
  • \(b,c,e,x,y:\)非負整数
rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
rule3:
  • \(dim(x)=Max\{b|a_{x,b}>0\}\)
  • \(h=Max\{dim(b)\}\)
  • \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
  • \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})∧(∃c[p_y^c(x)=b])\}\)
  • \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
  • \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
\(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
  • \(r=\begin{cases}Max\{b|∀y,y≥dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\Max\{b|∀y,y≥dim(k)[∃c[P_y^c(k)=b]])\}&\text{otherwise}\end{cases}\)
  • \({\Delta}=D_0D_1...D_{k-1-r}\)
  • \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
  • \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,y}-a_{r,y}-1&\text{if} dim(k)≤y≤h\\0&\text{otherwise}\end{cases}\)
  • \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
  • \(A=S_0S_1...S_{r-1}\)
  • \(B_0=S_rS_{r+1}...S_{k-1}\)
  • \(B_b=B_0+b×{\Delta}\)
\(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)

巨大不明行列システム(HUMs)[]

表記[]

  • \(k,m,n:\)自然数
  • \(a_{x,y}:\)非負整数
  • \(S_x=(a_{x,0},a_{x,1},...)\)


  • 正規形\(:S_0,S_1,...S_k[n]\)

定義[]

  • \(Z:\)零ベクトル
  • \(b,c,e,x,y:\)非負整数
rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
rule3:
  • \(dim(x)=Max\{b|a_{x,b}>0\}\)
  • \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
  • \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})∧(∃c[p_y^c(x)=b])\}\)
  • \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
  • \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
\(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
  • \(r=\begin{cases}Max\{b|∀y,y≥dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\Max\{b|∀y,y≥dim(k)[∃c[P_y^c(k)=b]]\}&\text{otherwise}\end{cases}\)
  • \({\Delta}=D_0D_1...D_{k-1-r}\)
  • \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
  • \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,y}-a_{r,y}-1&\text{if} y=dim(k)\\a_{k,y-1}-a_{r,y-1}-1&\text{if} y=dim(k)+1\\0&\text{otherwise}\end{cases}\)
  • \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
  • \(A=S_0S_1...S_{r-1}\)
  • \(B_0=S_rS_{r+1}...S_{k-1}\)
  • \(B_b=B_0+b×{\Delta}\)
\(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)

評価[]

(0)(1)(2)(2)=|(0,0)(1,0)(2,0)|(1,1)(2,0)(3,0)|(2,2)(3,0)(4,0)|...=B(0,0,0)(1,1,1)
(0)(1)(2)(3)(3)=(0,0)(1,0)(2,0)(3,0)|(2,2)(3,0)(4,0)(5,0)|(4,4)(5,0)(6,0)(7,0)|...
(0,0)(1,0)(2,0)(3,0)(2,2)=(0,0,0)(1,0,0)(2,0,0)(3,0,0)|(2,1,1)(3,0,0)(4,0,0)(5,0,0)|(4,2,2)(5,0,0)(6,0,0)(7,0,0)|...
(0)(1)(2)(3)(4)(4)=|(0,0)(1,0)(2,0)(3,0)(4,0)|(3,3)(4,0)(5,0)(6,0)(7,0)|(6,6)(7,0)(8,0)(9,0)(10,0)|...
(0,0)(1,0)(2,0)(3,0)(4,0)(3,3)=|(0,0,0)(1,0,0)(2,0,0)(3,0,0)(4,0,0)|(3,2,2)(4,0,0)(5,0,0)(6,0,0)(7,0,0)|...
(0,0,0)(1,0,0)(2,0,0)(3,0,0)(4,0,0)(3,2,2)=|(0,0,0,0)(1,0,0,0)(2,0,0,0)(3,0,0,0)(4,0,0,0)|(3,2,1,1)(4,0,0,0)(5,0,0,0)(6,0,0,0)(7,0,0,0)|...


(0,0)(1,1)=B(0(0)0)(1(0)1)
(0,0)(1,1)(1,1)=B(0,0(0)0)(1,1(0)1)(1,1(0)0)
(0,0)(1,1)(2,0)=(0,0)|(1,1)|(1,1)|(1,1)|...=B(0,0(0)0)(1,1(0)1)(1,1(0)0)(2,0(0)0)
(0,0)(1,1)(2,0)(2,0)=|(0,0)(1,1)(2,0)|(1,1)(2,2)(3,0)|(2,2)(3,3)(4,0)|...
(0,0)(1,1)(2,0)(1,1)(2,2)=(0,0)(1,1)(2,0)|(1,1)|(2,1)|(3,1)|...
(0,0)(1,1)(2,0)(1,1)(2,1)=|(0,0)(1,1)(2,0)(1,1)|(2,0)(3,1)(4,0)(3,1)|(4,0)(5,1)(6,0)(5,1)|...
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(2,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)(2,1,0(0)0)
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(2,2)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)(2,2,0(0)0)
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(3,0)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(3,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(4,0)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(2,0,0(0)0)
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(4,0)(3,1)(4,0)(5,0)(4,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(2,1,0(0)0)
(0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(4,0)(3,1)(4,0)(5,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0))(3,2,1(0)1)
(0,0)(1,1)(2,0)(1,1)(2,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(3,2,1(0)1)(3,2,1(0)0)(4,2,0(0)0)

超限行列システム(TMs)[]

表記[]

  • \(k,m,n:\)自然数
  • \(a_{x,y}:\)非負整数
  • \(S_x=(a_{x,0},a_{x,1},...)\)


  • 正規形\(:S_0,S_1,...S_k[n]\)

定義[]

  • \(Z:\)零ベクトル
  • \(b,c,e,x,y:\)非負整数
rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
rule3:
  • \(dim(x)=Max\{b|a_{x,b}>0\}\)
  • \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
  • \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,y+1}+1=a_{x,y+1})∧(∃c[p_y^c(x)=b])\}\)
  • \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b-1)∨(a_{b,0}=0))\}\)
  • \(P_{y+1}(x)=Max\{b|(b<x)∧(a_{b,y+1}<a_{x,y+1})∧\)
\(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
  • \(r=\begin{cases}Max\{b|∀y,y≤dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\Max\{b|∀y,y≤dim(k)[∃c[P_y^c(k)=b]]\}&\text{otherwise}\end{cases}\)
  • \({\Delta}=D_0D_1...D_{k-1-r}\)
  • \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
  • \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,dim(k)}-a_{r,dim(k)}-1&\text{if} dim(k)≤y≤dim(k)+n\\0&\text{otherwise}\end{cases}\)
  • \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
  • \(A=S_0S_1...S_{r-1}\)
  • \(B_0=S_rS_{r+1}...S_{k-1}\)
  • \(B_b=B_0+b×{\Delta}\)
\(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)

評価[]

(0)(1)(2)(2)=|(0)(1)(2)|(1,1,1...1)(2)(3)|(2,2,2...2)(3)(4)|...=B(0(0)0)(1(0)1)
(0)(1)(2)(2)(2)=|(0)(1)(2)(2)|(1,1,1...1)(2)(3)(3)|(2,2,2...2)(3)(4)(4)|...=B(0(0)0)(1(0)1)(1(0)1)
(0)(1)(2)(3)=B(0(0)0)(1(0)1)(2(0)0)
(0)(1)(2)(3)(2,1)=B(0,0(0)0)(1,1(0)1)(2,1(0)0)
(0)(1)(2)(3)(2,1)(2)=|(0)(1)(2)(3)(2,1)|(1,1,1...1)(2)(3)(4)(3,2)|(2,2,2...2)(3)(4)(5)(4,3)|...
(0)(1)(2)(3)(2,1)(1,1)(2)(3)(4)(3,2)=(0)(1)(2)(3)(2,1)|(1,1)(2)(3)(4)|(3,1)(4)(5)(6)|(4,1)(5)(6)(7)|...
(0)(1)(2)(3)(2,1)(1,1)(2)(3)(4)(3,1)(3)=(0)(1)(2)(3)(2,1)|(1,1)(2)(3)(4)(3,1)|(2,2,1...1)(3)(4)(5)(4,1)|(3,3,2...2)(4)(5)(6)(5,1)|...=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(1,1,0(0)0)(2,2,1(0)1)(3,1,0(0)0)(2,2,1(0)1)
(0)(1)(2)(3)(2,1)(1,1)(2)(3)(4)(3,2)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(1,1,0(0)0)(2,2,1(0)0)(3,2,0(0)0)
(0)(1)(2)(3)(2,1)(1,1,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(1,1,1(0)0)
(0)(1)(2)(3)(2,1)(2)=B(0,0(0)0)(1,1(0)1)(2,1(0)0)(1,1(0)1)
(0)(1)(2)(3)(2,1)(2,1)=B(0,0(0)0)(1,1(0)0)(2,1(0)0)(1,1(0)1)(2,1(0)0)
(0)(1)(2)(3)(2,1)(3)=B(0,0(0)0)(1,1(0)0)(2,1(0)0)(2,0(0)0)
(0)(1)(2)(3)(2,1)(3,1)=B(0,0(0)0)(1,1(0)0)(2,1(0)0)(2,1(0)0)
(0)(1)(2)(3)(2,2)=|(0)(1)(2)(3)|(2,1,1...1)(3)(4)(5)|(4,2,2...2)(5)(6)(7)|...=B(0,0(0)0)(1,1(0)0)(2,1(0)1)
(0)(1)(2)(3)(2,2,2)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,1(0)1)
(0)(1)(2)(3)(3)=B(0(0)0)(1(0)1)(2(0)1)
(0)(1,1)=B(0(0)0)(1(0)1)(2(0)2)
(0)(1,1)(1,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)0)
(0)(1,1)(2)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)0)(2,0(0)0)
(0)(1,1)(2)(2)=|(0)(1,1)(2)|(1,1,1...1)(2,2)(3)|(2,2,2...2)(3,3)(4)|...
(0)(1,1)(2)(1,1,1)=|(0)(1,1)(2)|(1,1)(2,2)(3)|(2,2)(3,3)(4)|...
(0)(1,1)(2)(1,1)(2,2)=(0)(1,1)(2)|(1,1)|(2,1)|(3,1)|...
(0)(1,1)(2)(1,1)(2,1)=|(0)(1,1)(2)(1,1)|(2)(3,1)(4)(3,1)|(4)(5,1)(6)(5,1)|...
(0)(1,1)(2)(1,1)(2)(3)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)0)(2,0(0)0)(3,0(0)0)
(0)(1,1)(2)(1,1)(2)(3)(3)=(0)(1,1)(2)|(1,1)(2)(3)|(2,2,1...1)(3)(4)|(3,3,2...2)(4)(5)|...=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)2)(1,1,0(0)0)(2,2,1(0)1)
(0)(1,1)(2)(1,1)(2)(3,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)2)(1,1,0(0)0)(2,2,1(0)1)(3,3,2(0)2)
(0)(1,1)(2)(1,1)(2)(3,1)(3)=(0)(1,1)(2)|(1,1)(2)(3,1)|(2,2,1...1)(3)(4,2,1...1)|(3,3,2...2)(4)(5,3,2...2)|...=B(0(0)0)(1(0)1)(2(0)2)(1(0)1)
(0)(1,1)(2)(1,1)(2)(3,1)(3,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)1)(2,1(0)0)
(0)(1,1)(2)(1,1)(2)(3,1)(4)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)1)(2,1(0)0)(3,0(0)0)
(0)(1,1)(2)(1,1)(2)(3,1)(4)(3,1)(4)(5,1)=B(0,0,0(0)0)(2,2,2(0)2)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)1)(4,3,2(0)2)
(0)(1,1)(2)(1,1)(2,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)2)(1,1,1(0)1)(2,1,1(0)0)

第2大偽原始数列(SLPpSs)[]

\(LSZNOS+NB\)

表記[]

\((a_0,a_1,a_2...a_k)[n]\)

サブルール[]

  • 大小関係
\(A<B⇔∃C[((A<C)∨(A=C))∧(∃c[(\text{ex}(B,c)=C)])]\)

※\(A、B、C\)は列

  • 展開

列\(S=(s_0,s_1,s_2...s_m)\)と自然数\(b\)に対して\(\text{ex}(S,b)\)を以下の通り定義する。

  • \(r=Max\{c|(s_{c-1}≥s_c)∧(s_c<s_m)\}\)
  • \(q(0)=\begin{cases}Max\{c|s_{c-1}=s_r-1\}&\text{if} ∃c\\0&\text{otherwise}\end{cases}\)
  • \(q(c+1)=min\{d|(s_d=s_r)∧(q(c)<d)\}\)
  • \(l=Max\{c|q(c)=r\}\)
  • \(S_c=(s_{q(c)},s_{q(c)+1},s_{q(c)+2}...s_{q(c+1)-1})\)
  • \(S_l=(s_{q(l)},s_{q(l)+1},s_{q(l)+2}...s_m)\)
  • \(i=\begin{cases}Max\{q(c)|S_c<S_l\}&\text{if} ∃q(c)\\q(0)&\text{otherwise}\end{cases}\)
  • \(A=(s_0,s_1,s_2...s_{i-1})\)
  • \({\Delta}=s_m-s_i-1\)
  • \(B_c=(s_i,s_{i+1},s_{i+2}...s_{m-1})+{\Delta}×c\)
  • \(\text{ex}(S,b)=A\frown B_0\frown B_1\frown B_2...B_b\)

計算法[]

rule1:\((0)[n]=n+1\)
rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
rule3:\(\text{ex}((a_0,a_1,a_2...a_k),n)[n]\)

評価[]

(0,1,2)=\({\beta_0}({\beta_0}({\Omega}))\)
(0,1,2,0,1,1,2,3)=\({\beta_0}({\beta_0}({\Omega}),0,{\beta_0}({\Omega}))\)
(0,1,2,0,1,1,2,3,0,1,2)=(|0,1,2,0,1,1,2,3|1,2,3,1,2,2,3,4|2,3,4,2,3,3,4,5|...)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
(0,1,2,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
(0,1,2,0,1,1,2,3,1,0,1,1,2,3,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,0,{\beta_0}({\Omega})))\)
(0,1,2,0,1,1,2,3,1,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,1))\)
(0,1,2,0,1,1,2,3,1,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},1,{\beta_0}({\Omega}))))\)
(0,1,2,0,1,1,2,3,1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),2))\)
(0,1,2,0,1,1,2,3,1,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\omega}))\)
(0,1,2,0,1,1,2,3,1,1,2,3)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\beta_0}({\Omega}))))\)
(0,1,2,0,1,1,2,3,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\beta_0}({\Omega}),0)))\)
(0,1,2,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
(0,1,2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0)))\)
(0,1,2,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
(0,1,2,2,0,1,2,2)=(|0,1,2,2,0,1,2|1,2,3,3,1,2,3|2,3,4,4,2,3,4|...)
(0,1,2,2,0,1,2)=(|0,1,2,2,0,1|1,2,3,3,1,2|2,3,4,4,2,3|...)
(0,1,2,2,0,1,1,2,3,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega})))\)
(0,1,2,2,0,1,1,2,3,0,1,2,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega}),1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
(0,1,2,2,0,1,1,2,3,0,1,2,0,1,2,2)=(0,1,2,2,0,1,1,2,3,0,1,2|0,1,2|1,2,3|2,3,4|...)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))))))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,1,2,3,0,1,2,1)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),1,1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,1,2,3,1)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),1,2))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),{\beta_0}({\Omega})))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,2,1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))),0)))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,0,1,2,1,2,3,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,2))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega})))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,0,1,2,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))))))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,0,{\beta_0}({\Omega})))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,1)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,1))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,1)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,1,2))\)
(0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2)
=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,1,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)

第3大偽原始数列(TLPpSs)[]

\(LSZNOS+NB\)

表記[]

\((a_0,a_1,a_2...a_k)[n]\)

サブルール[]

  • 大小関係
\(A<B⇔∃C[((A<C)∨(A=C))∧(∃c[(\text{ex}(B,c)=C)])]\)

※\(A、B、C\)は列

  • 展開

列\(S=(s_0,s_1,s_2...s_m)\)と自然数\(b\)に対して\(\text{ex}(S,b)\)を以下の通り定義する。

  • \(p(c,d)=\begin{cases}Max\{e|(s_e=d)∧(e≤c)\}&\text{if} ∃e\\0&\text{otherwise}\end{cases}\)
  • \(q(c,0)=\begin{cases}Max\{e|s_{e-1}=c-1\}&\text{if} ∃e\\0&\text{otherwise}\end{cases}\)
  • \(q(c,d+1)=min\{e|(q(c,d)<e)∧(s_e=c)\}\)
  • \(S_{c,d}=(s_{q(c,d)},s_{q(c,d)+1},s_{q(c,d)+2}...s_{q(c,d+1)-1})\)
  • \(l_c=Max\{d|q(c,d)=p(m,c)\}\)
  • \(S_{c,l_c}=(s_{p(m,c)},s_{p(m,c)+1},s_{p(m,c)+2}...s_m)\)
  • \(i=\begin{cases}Max\{q(c,d)|S_{c,d}<S_{c,l_c}\}&\text{if} ∃q(c,d)\\0&\text{otherwise}\end{cases}\)
  • \(A=(s_0,s_1,s_2...s_{i-1})\)
  • \({\Delta}=s_m-s_i-1\)
  • \(B_c=(s_i,s_{i+1},s_{i+2}...s_{m-1})+{\Delta}×c\)
  • \(\text{ex}(S,b)=A\frown B_0\frown B_1\frown B_2...B_b\)

計算法[]

rule1:\((0)[n]=n+1\)
rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
rule3:\(\text{ex}((a_0,a_1,a_2...a_k),n)[n]\)

\(m\)-階差数列システム[]

​表記[]

\((a_0,a_1...a_k)_m[n]\)

​計算法[]

rule1:\((a_0,a_1...a_{k-1},0)_m[n]=(a_0,a_1...a_{k-1})_m[n+1]\)
rule2:
  • \(D=max\{a_k-a_{k-1},-m\}\)
  • \(i=Max\{j|(a_j-a_{j-1}<D)∧(a_j<a_k)\}\)
  • \({\Delta}=a_k-a_i-1\)
  • \(A=(a_0,a_1,...a_{i-1})_m\)
  • \(B_p=(a_i+{\Delta}×p,a_{i+1}+{\Delta}×p,...a_{k-1}+{\Delta}×p)_m\)
  • \((a_0,a_1...a_k)_m[n]=\{A\frown B_0\frown B_1\frown...B_n\}[n+1]\)

評価[]

  • \(m=-2→\)原始数列
(0,1,2,...)=(0,1,3)=\({\varepsilon_0}\)
(0,1,3,0,1,3)=\({\varepsilon_0}×2\)
(0,1,3,1)=\({\varepsilon_0}×{\omega}\)
(0,1,3,1,3)=\({\varepsilon_0}^2\)
(0,1,3,2)=\({\varepsilon_0^{\omega}}\)
(0,1,3,2,4)=\({\varepsilon_0^{\varepsilon_0}}\)
(0,1,3,3)=\({\varepsilon_1}\)
(0,1,3,4)=\({\psi_0({\omega})}\)
(0,1,3,4,6)=\({\psi_0({\psi_0(0)})}\)
(0,1,3,5)=(0|1,3|4,6|7,9|...)=\({\psi_0({\Omega})}\)
(0,1,3,5,3)=\({\psi_0({\Omega}+1)}\)
(0,1,3,5,3,5)=\({\psi_0({\Omega+{\psi_0(0)}})}\)
(0,1,3,5,4)=\({\psi_0({\Omega+{\psi_0(0)×{\omega}}})}\)
(0,1,3,5,5)=\({\psi_0({\Omega+{\psi_0(1)}})}\)
(0,1,3,5,6)=\({\psi_0({\Omega+{\psi_0({\omega})}})}\)
(0,1,3,5,6,8,10)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
(0,1,3,5,7)=\({\psi_0({\Omega×2})}\)
(0,1,3,6)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,3,6,8,11)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
(0,1,3,6,9)=\({\psi_0({\Omega^2})}\)
(0,1,3,6,10)=\({\psi_0({\Omega^2×{\omega}})}\)
(0,1,3,6,10...)=\({\psi_0({\Omega^{\omega}})}\)
  • \(m=-1→\)大偽原始数列
  • \(m=0\)
(0,1,2)=(|0,1|1,2|2,3|...)
(0,1,1,2,2)=(|0,1,1,2|1,2,2,3|2,3,3,4|...)=\({\varepsilon_0}\)
(0,1,1,2,2,3)=\({\psi_0({\omega})}\)
(0,1,1,2,2,3,2,3,3,4,4)=\({\psi_0({\varepsilon_0})}\)
(0,1,1,2,2,3,3)=\({\psi_0({\Omega})}\)
(0,1,2)=\({\psi_0({\Omega^{\omega}})}\)
(0,1,2,2)=\({\psi_0({\Omega^{\omega}}+1)}\)
(0,1,2,2,3,3)=\({\psi_0({\Omega^{\omega}+{\Omega}})}\)
(0,1,2,2,3,4)=\({\psi_0({\Omega^{\omega}×2})}\)
(0,1,2,3)=\({\psi_0({\Omega^{\omega}×{\omega}})}\)
(0,1,2,3,3,4,5,6)=\({\psi_0({\Omega^{\omega}×{\omega×2}})}\)
(0,1,2,3,4)=\({\psi_0({\Omega^{\omega}×{\omega^2}})}\)
(0,1,3)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega}}})}\)
(0,1,3,3,4,6)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega}×2}})}\)
(0,1,3,4)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega+1}}})}\)
(0,1,3,4,6)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega×2}}})}\)
(0,1,3,5)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega^2}}})}\)
(0,1,3,6)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega^{\omega}}}})}\)
(0,1,3,6,10...)=\({\psi_0({\Omega^{\omega}×{\varepsilon_0}})}\)

\(L-\)階差数列システム[]

[1]

\(m\)-ヒドラ数列システム[]

​表記[]

\((a_0,a_1...a_k)_m[n]\)

​計算法[]

rule1:\((a_0,a_1...a_{k-1},0)_m[n]=(a_0,a_1...a_{k-1})_m[n+1]\)
rule2:
  • \(p(b)=Max\{c|a_c<a_b+m+1\}\)
  • \(i=\begin{cases}Max\{b|(a_b<a_k)∧(∃c[p^c(k)=b])\}&\text{if} a_k+m-a_{p(k)}=0\\Max\{b|(a_b<a_k)∧(∃c[p^c(k)=b])∧(a_b-a_{p(b)}<a_k-a_{p(k)})\}&\text{otherwise}\end{cases}\)
  • \({\Delta}=a_k-a_i-1\)
  • \(A=(a_0,a_1...a_{i-1})_m\)
  • \(B_b=(a_i+{\Delta}×b,a_{i+1}+{\Delta}×b,...a_{k-1}+{\Delta}×b)_m\)
  • \((a_0,a_1...a_k)_m[n]=A\frown B_0\frown B_1\frown...B_n[n]\)

評価[]

  • m=-1→原始数列
(0,1,3)=(0|1|2|3|...)=\({\varepsilon_0}\)
(0,1,3,1,3)=(0,1,3|1|2|3|...)=\({\varepsilon_0^2}\)
(0,1,3,2)=(0|1,3|1,3|1,3|...)=\({\varepsilon_0^{\omega}}\)
(0,1,3,3)=(0|1,3|2,4|3,5|...)=\({\varepsilon_1}\)
(0,1,3,4)=(0,1|3|3|3|...)=\({\psi_0({\omega})}\)
(0,1,3,4,6)=(0,1,3|4|5|6|...)=\({\psi_0({\psi_0(0)})}\)
(0,1,3,5)=(0|1,3|4,6|7,9|...)=\({\psi_0({\Omega})}\)
(0,1,3,5,3)=(0|1,3,5|2,4,6|3,5,7|...)=\({\psi_0({\Omega+1})}\)
(0,1,3,5,3,4,6,8)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
(0,1,3,5,3,5)=(0|1,3,5,3|4,6,8,6|7,9,11,9|...)=\({\psi_0({\Omega×2})}\)
(0,1,3,5,4)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,3,5,5)=\({\psi_0({\Omega^2})}\)
(0,1,3,5,6)=\({\psi_0({\Omega^{\omega}})}\)
(0,1,3,5,7)=\({\psi_0({\Omega^{\Omega}})}\)
(0,1,3,5,7,9)=\({\psi_0({\Omega^{\Omega^{\Omega}}})}\)
(0,1,3,6)=\({\psi_0({\psi_1(0)})}\)
(0,1,3,6,10...)=\({\psi_0({\Omega_{\omega}})}\)
  • m=0
(0,1,2)=(|0,1|1,2|2,3|...)=\({\varepsilon_0}\)
(0,1,2,2)=(0|1,2|1,2|1,2|...)=\({\varepsilon_0×{\omega^{\omega^2}}}\)
(0,1,2,2,3,4)=\({\varepsilon_0^2}\)
(0,1,2,3)=(|0,1,2|2,3,4|4,5,6|...)=\({\varepsilon_1}\)
(0,1,3)=(0|1|2|3|...)=\({\psi_0({\omega})}\)
(0,1,3,2)=\({\psi_0({\omega}+1)}\)
(0,1,3,2,3)=\({\psi_0({\omega+2})}\)
(0,1,3,2,4)=\({\psi_0({\omega×2})}\)
(0,1,3,3)=(0|1,3|2,4|3,5|...)=\({\psi_0({\omega^2})}\)
(0,1,3,3,2,4,4)=\({\psi_0({\omega^2×2})}\)
(0,1,3,3,4)=\({\psi_0({\omega^{\omega}})}\)
(0,1,3,3,4,5)=\({\psi_0({\psi_0(0)})}\)
(0,1,3,4)=\({\psi_0({\Omega})}\)
(0,1,3,4,2)=\({\psi_0({\Omega+1})}\)
(0,1,3,4,2,4,5)=\({\psi_0({\Omega×2})}\)
(0,1,3,4,3)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,3,4,3,2,4,5)=\({\psi_0({\Omega×({\omega+1})})}\)
(0,1,3,4,3,3)=\({\psi_0({\Omega×{\omega×2}})}\)
(0,1,3,4,3,4)=\({\psi_0({\Omega×{\omega^2}})}\)
(0,1,3,4,4)=\({\psi_0({\Omega×{\omega^{\omega}}})}\)
(0,1,3,4,4,5,7,8)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
(0,1,3,4,5)=\({\psi_0({\Omega^2})}\)
(0,1,3,4,5,2,4,5,6)=\({\psi_0({\Omega^2×2})}\)
(0,1,3,4,6)=\({\psi_0({\Omega^{\omega}})}\)
(0,1,3,4,6,3)=\({\psi_0({\Omega^{\omega}×2})}\)
(0,1,3,4,6,5)=\({\psi_0({\Omega^{\omega+1}})}\)
(0,1,3,4,6,5,7)=\({\psi_0({\Omega^{\omega×2}})}\)
(0,1,3,4,6,6)=\({\psi_0({\Omega^{\omega^{\omega}}})}\)
(0,1,3,4,6,7)=\({\psi_0({\Omega^{\Omega}})}\)
(0,1,3,5)=(0|1,3|4,6|7,9|...)=\({\psi_0({\psi_1(0)})}\)
(0,1,3,5,3)=\({\psi_0({\psi_1(0)×{\omega}})}\)
(0,1,3,5,4)=\({\psi_0({\psi_1(0)×{\Omega}})}\)
(0,1,3,5,5)=\({\psi_0({\psi_1(0)^{\omega}})}\)
(0,1,3,5,6)=\({\psi_0({\psi_1(0)^{\Omega}})}\)
(0,1,3,5,7)=\({\psi_0({\psi_1(1)})}\)
(0,1,3,5,7,9)=\({\psi_0({\psi_1(2)})}\)
(0,1,3,6)=\({\psi_0({\psi_1({\omega})})}\)
(0,1,3,6,10...)=\({\psi_0({\Omega_{\omega}})}\)
  • m=1
(0,1,1,2,2)=(|0,1,1,2|1,2,2,3|2,3,3,4|...)=\({\varepsilon_0}\)
(0,1,1,2,2,2)=(|0,1,1,2,2|1,2,2,3,3|2,3,3,4,4|...)=\({\varepsilon_1}\)
(0,1,1,2,2,3)=\({\psi_0({\omega})}\)
(0,1,1,2,2,3,2)=(0,1|1,2,2,3|1,2,2,3|1,2,2,3|...)=\({\psi_0({\omega})×{\omega^{\omega^{\omega+1}}}}\)
(0,1,1,2,2,3,2,2)=(|0,1,1,2,2,3,2|1,2,2,3,3,4,3|2,3,3,4,4,5,4|...)=\({\psi_0({\omega+1})}\)
(0,1,1,2,2,3,2,3)=\({\psi_0({\omega×2})}\)
(0,1,1,2,2,3,2,3,3)=\({\psi_0({\omega^2})}\)
(0,1,1,2,2,3,3)=(|0,1,1,2,2,3|2,3,3,4,4,5|4,5,5,6,6,7|...)=\({\psi_0({\Omega})}\)
(0,1,1,2,2,3,3,2,2)=\({\psi_0({\Omega+1})}\)
(0,1,1,2,2,3,3,2,3)=\({\psi_0({\Omega+{\omega}})}\)
(0,1,1,2,2,3,3,3)=\({\psi_0({\Omega×2})}\)
(0,1,1,2,2,3,3,4)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,1,2,2,3,3,4,3,3)=\({\psi_0({\Omega×({\omega+1})})}\)
(0,1,1,2,2,3,3,4,4)=\({\psi_0({\Omega^2})}\)
(0,1,2)=\({\psi_0({\Omega^{\omega}})}\)

第2-\(m\)-階差数列[]

​表記[]

\((a_0,a_1,・・・a_k)_m[n]\)

​計算法[]

rule1:\((a_0,a_1,・・・a_{k-1},0)_m[n]=(a_0,a_1,・・・a_{k-1})_m[n+1]\)
rule2:
  • \(b=Max\{-m,a_k-a_{k-1}\}\)
  • \(c_l=\begin{cases}0&\text{if} l=0\\min\{d|(a_d-a_{d-1}<b)∧(c_{l-1}<d)\}&\text{otherwise}\end{cases}\)
  • \(p(d)=Max\{e|(a_e<a_d)∧(e<d)∧(∃f[e=c_f])\}\)
  • \(i=\begin{cases}p(k)&\text{if} a_k-a_{p(k)}=1\\Max\{d|(∃e[p^e(k)=d])∧(a_k-a_{p(k)}>a_d-a_{p(d)})\}&\text{otherwise}\end{cases}\)
  • \(A=(a_0,a_1...a_{i-1})_m\)
  • \(B_l=(a_i,a_{i+1}...a_{k-1})_m+(a_k-a_i-1)×l\)
  • \((a_0,a_1,・・・a_{k-1},a_k)_m[n]=A\frown B_0\frown B_1\frown...B_k[n]\)

補足[]

  • \(b\)を最小値とする階差表記に変換→先頭の項で-1-ヒドラ数列を計算
  • \(p(d)\)は階差表記の先頭部分

\((0,1,2,3,3,4,5,5,6,7,8)_{-1}→(0[1,1,1],3[1,1],5[1,1],8)→(0,3,5,8)→\)
\((0,3|5|7||9|...)→(0,1,2,3,3,4,5|5,6,7|7,8,9|9,10,11|...)\)

評価[]

  • m=-1
(0,1,2)=(0[1],2)=\({\varepsilon_0}\)
(0,1,2,2)=(0[1,1],2)=\({\varepsilon_1}\)
(0,1,2,2,3)=(0[1,1],2,3)=(0,1,2|2|2|2|...)=\({\psi_0({\omega})}\)
(0,1,2,2,3,4)=(0[1,1],2[1],4)=(|0,1,2,2,3|3,4,5,5,6|6,7,8,8,9|...)=\({\psi_0({\Omega})}\)
(0,1,2,2,3,4,2,3,4)=(0[1,1],2[1,1],2[1],4)=\({\psi_0({\Omega×2})}\)
(0,1,2,2,3,4,3)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,2,2,3,4,4)=\({\psi_0({\Omega^2})}\)
(0,1,2,2,3,4,4,5)=\({\psi_0({\Omega^{\omega}})}\)
(0,1,2,2,3,4,4,5,6)=\({\psi_0({\Omega^{\Omega}})}\)
(0,1,2,3)=\({\psi_0({\psi_1(0)})}\)
(0,1,2,3,2)=\({\psi_0({\psi_1(0)+1})}\)
(0,1,2,3,2,3,4)=\({\psi_0({\psi_1(0)+{\Omega}})}\)
(0,1,2,3,2,3,4)=\({\psi_0({\psi_1(0)×2})}\)
(0,1,2,3,2,3,4,4)=\({\psi_0({\psi_1(0)×{\Omega}})}\)
(0,1,2,3,2,3,4,5)=\({\psi_0({\psi_1(0)^2})}\)
(0,1,2,3,2,3,4,5,4,5,6,7)=\({\psi_0({\psi_1(0)^{\psi_1(0)}})}\)
(0,1,2,3,3)=\({\psi_0({\psi_1(1)})}\)
(0,1,2,3,3,4,5)=\({\psi_0({\psi_1({\Omega})})}\)
(0,1,2,3,3,4,5,5,6,7,8)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
(0,1,2,3,3,4,5,6)=\({\psi_0({\psi_1({\Omega_2})})}\)
(0,1,3)=\({\psi_0({\Omega_{\omega}})}\)
(0,1,3,3)=(0[1,2],3)=(|0,1,3|2,3,5|4,5,7|...)
(0,1,3,2)=\({\psi_0({\Omega_{\omega}+1})}\)
(0,1,3,2,3)=\({\psi_0({\Omega_{\omega}+{\omega}})}\)
(0,1,3,2,3,4)=\({\psi_0({\Omega_{\omega}+{\Omega}})}\)
(0,1,3,2,3,4,5)=\({\psi_0({\Omega_{\omega}+{\psi_1(0)}})}\)
(0,1,3,2,3,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
(0,1,3,2,3,5,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\omega}}})}\)
(0,1,3,2,3,5,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\Omega}}})}\)
(0,1,3,2,3,5,4,5,6)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\Omega^2}}})}\)
(0,1,3,2,3,5,4,5,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})^2}})}\)
(0,1,3,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
(0,1,3,3,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\omega}})}})}\)
(0,1,3,3,4,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega}})}})}\)
(0,1,3,3,4,6)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}})}\)
(0,1,3,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}\)
(0,1,3,4,5)=(0[1,2,1],5)=(|0,1,3,4|4,5,7,8|8,9,11,12|...)
(0,1,3,4,4)=(0[1,2,1],4)=(|0,1,3,4|3,4,6,7|6,7,9,10|...)
(0,1,3,4,3,4,6,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}})}\)
(0,1,3,4,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2×2}})}})}\)
(0,1,3,4,4,5,6)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2×{\Omega}}})}})}\)
(0,1,3,4,4,5,6,6,7,9)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2×{\psi_1({\Omega_{\omega}+{\Omega_2}})}}})}})}\)
(0,1,3,4,4,5,6,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2^2}})}})}\)
(0,1,3,4,4,5,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_2({\Omega_{\omega}})}})}})}\)
(0,1,3,4,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_2({\Omega_{\omega}+{\Omega_3}})}})}})}\)
(0,1,3,4,6)=\({\psi_0({\Omega_{\omega}×2})}\)
(0,1,3,5)=\({\psi_0({\Omega_{\omega}×{\omega}})}\)
(0,1,3,5,6,8)=\({\psi_0({\Omega_{\omega}×({\omega+1})})}\)
(0,1,3,5,6,8,10)=\({\psi_0({\Omega_{\omega}×{\omega×2}})}\)
(0,1,3,5,7)=\({\psi_0({\Omega_{\omega}×{\omega^2}})}\)
(0,1,3,6)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega}}})}\)
(0,1,3,6,10...)=\({\psi_0({\Omega_{\omega}×{\varepsilon_0}})}\)
  • m=0
(0,1,1,2,2)=(0[1,0,1],2)=\({\varepsilon_0}\)
(0,1,1,2,2,3)=\({\psi_0({\omega})}\)
(0,1,1,2,2,3,2,3,3,4,4)=(0[1,0,1,0,1],2[1,0,1],4)=\({\psi_0({\Omega})}\)
(0,1,1,2,2,3,2,3,3,4,4,2,3,3,4,4)=\({\psi_0({\Omega×2})}\)
(0,1,1,2,2,3,2,3,3,4,4,3)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,1,2,2,3,2,3,3,4,4,4)=\({\psi_0({\Omega^2})}\)
(0,1,1,2,2,3,2,3,3,4,4,5)=\({\psi_0({\Omega^{\omega}})}\)
(0,1,1,2,2,3,2,3,3,4,4,5,4,5,5,6,6)=\({\psi_0({\Omega^{\Omega}})}\)
(0,1,1,2,2,3,3)=\({\psi_0({\psi_1(0)})}\)
(0,1,1,2,2,3,3,2)=\({\psi_0({\psi_1(0)+1})}\)
(0,1,1,2,2,3,3,2,3,3,4,4)=\({\psi_0({\psi_1(0)+{\Omega}})}\)
(0,1,1,2,2,3,3,2,3,3,4,4,5,5)=\({\psi_0({\psi_1(0)×2})}\)
(0,1,1,2,2,3,3,2,3,3,4,4,5,5,4)=\({\psi_0({\psi_1(0)×{\Omega}})}\)
(0,1,1,2,2,3,3,2,3,3,4,4,5,5,4,5,5,6,6,7,7)=\({\psi_0({\psi_1(0)^2})}\)
(0,1,1,2,2,3,3,3)=\({\psi_0({\psi_1(1)})}\)
(0,1,1,2,2,3,3,4)=\({\psi_0({\psi_1({\omega})})}\)
(0,1,1,2,2,3,3,4,3,4,4,5,5)=\({\psi_0({\psi_1({\Omega})})}\)
(0,1,1,2,2,3,3,4,3,4,4,5,5,6,5,6,6,7,7,8,8)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
(0,1,1,2,2,3,3,4,3,4,4,5,5,6,6)=\({\psi_0({\psi_1({\Omega_2})})}\)
(0,1,2)=\({\psi_0({\Omega_{\omega}})}\)
(0,1,2,2)=\({\psi_0({\Omega_{\omega}+1})}\)
(0,1,2,2,3,3)=(0[1,1,0,1],3)=(|0,1,2,2,3|2,3,4,4,5|4,5,6,6,7|...)
(0,1,2,2,3,2,3,3,4,4)=(|0[1,1,0,1],2[1,0,1],4)=\({\psi_0({\Omega_{\omega}+{\Omega}})}\)
(0,1,2,2,3,2,3,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
(0,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
(0,1,2,2,3,3,4,3,4,4,5,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega}})}})}\)
(0,1,2,2,3,3,4,4)=(|0,1,2,2,3,3,4|3,4,5,5,6,6,7|6,7,8,8,9,9,10|...)
\(={\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}\)
(0,1,2,2,3,4)=\({\psi_0({\Omega_{\omega}×2})}\)
(0,1,2,3)=\({\psi_0({\Omega_{\omega}×{\omega^2}})}\)
(0,1,3)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega}}})}\)
(0,1,3,4,6)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega×2}}})}\)
(0,1,3,5)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega^2}}})}\)
(0,1,3,6)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega^{\omega}}}})}\)
(0,1,3,10...)=\({\psi_0({\Omega_{\omega}×{\varepsilon_0}})}\)
  • m=1
(0,1,1,2,1,2,2,3,2)=(0[1,0,1,-1,1,0,1]2)=\({\varepsilon_0}\)
(0,1,1,2,1,2,2,3,2,1,2,2,3,2)=\({\varepsilon_1}\)
(0,1,1,2,1,2,2,3,2,2)=(0[1,0,1],1[1,0,1],2,2)=\({\psi_0({\omega})}\)
(0,1,1,2,1,2,2,3,2,3)=\({\psi_0({\omega^{\omega}})}\)
(0,1,1,2,1,2,2,3,2,3,2)=\({\psi_0({\omega^{\omega}+1})}\)
(0,1,1,2,1,2,2,3,2,3,2,1,2,2,3,2)=\({\psi_0({\omega^{\omega}+2})}\)
(0,1,1,2,1,2,2,3,2,3,2,2)=\({\psi_0({\omega^{\omega+1}})}\)
(0,1,1,2,1,2,2,3,2,3,3,4,3)=(0[1,0,1,-1,1,0,1,-1,1,0,1],3)
=(|0,1,1,2,1,2,2,3,2,3,3,4|2,3,3,4,3,4,4,5,4,5,5,6|4,5,5,6,5,6,6,7,6,7,7,8|...)
(0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4)=\({\psi_0({\Omega})}\)
(0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2)=\({\psi_0({\Omega}+1)}\)
(0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2,1,2,2,3,2)=\({\psi_0({\Omega+2})}\)
(0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2,2)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2,3,3,4,3,4,4,5,4)=\({\psi_0({\Omega^2})}\)
(0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,3)=\({\psi_0({\Omega^{\omega}})}\)
(S_2,S_2+1,S_2+2,S_2+2,S_2+3,S_2+4,S_2+4,S_2+5,S_2+6,4)=\({\psi_0({\Omega^{\Omega}})}\)
(S_2,S_2+1,S_2+2,3)=\({\psi_0({\psi_1(0)})}\)
(0,1,1,2,2)=\({\psi_0({\Omega_{\omega}})}\)
(0,1,1,2,2,2)=(|0,1,1,2,2|1,2,2,3,3|2,3,3,4,4|...)
(0,1,1,2,2,1,2,2,3,2)=\({\psi_0({\Omega_{\omega}+1})}\)
(0,1,1,2,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4)=\({\psi_0({\Omega_{\omega}+{\Omega}})}\)
(0,1,1,2,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,5,5,6,5)=\({\psi_0({\Omega_{\omega}+{\psi_1(0)}})}\)
(0,1,1,2,2,1,2,2,3,2,3,3,4,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
(0,1,1,2,2,1,2,2,3,2,3,3,4,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
(0,1,1,2,2,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}×2})}\)
(0,1,1,2,2,1,2,2,3,3,2)=\({\psi_0({\Omega_{\omega}×2+1})}\)
(0,1,1,2,2,1,2,2,3,3,2,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}×3})}\)
(0,1,1,2,2,1,2,2,3,3,2,2)=\({\psi_0({\Omega_{\omega}×{\omega}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,3)=\({\psi_0({\Omega_{\omega}×{\Omega}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,3,2,3,3,4,3,4,4,5,5)=\({\psi_0({\Omega_{\omega}×{\psi_1({\Omega_{\omega}})}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}^2})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2)=\({\psi_0({\Omega_{\omega}^2+1})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2,1,2,2,3,3,2,3,3,4)=\({\psi_0({\Omega_{\omega}^2}+{\psi_1({\Omega_{\omega}×2})})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2,2)=\({\psi_0({\Omega_{\omega}^2+{\psi_1({\Omega_{\omega}×2})×{\omega}}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2,3,3,4,4,3,4,4,5,5,4,5,5,6,6)=\({\psi_0({\Omega_{\omega}^2+{\psi_1({\Omega_{\omega}^2})}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3)=\({\psi_0({\Omega_{\omega}^2+{\psi_1({\Omega_{\omega}^2+1})}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}^2+{\Omega_{\omega}}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,1,2,2,3,3,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}^2×2})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,2)=\({\psi_0({\Omega_{\omega}^2×{\omega}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}^3})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,3)=\({\psi_0({\Omega_{\omega}^{\omega}})}\)
(0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,4,4,5,5)=\({\psi_0({\Omega_{\omega}^{\Omega_{\omega}}})}\)
(0,1,1,2,2,2)=\({\psi_0({\psi_{\omega}(0)})}\)

ベクレミシェフ行列[]

表記[]

  • \(k,m,n,a_{x,y}:\)非負整数
  • \(S_x=(a_{x,0},a_{x,1}...a_{x,m})\)
  • 正規形:\(S_0S_1...S_k[n]\)

計算法[]

rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
rule3:\(S_0S_1...S_{k-1}(0,0...0,i+1...a_m)[n]=S_0S_1...S_{k-1}(0,0...n,i...a_m)[n]\)
rule4:
  • \(r=Max\{b|∃c[((c<m)⇒(∀d,c<d≤m[(a_{b,d}=a_{k,d}]))∧(a_{b,c}<a_{k,c})]\}\)
  • \(A=S_0S_1...S_r\)
  • \(B=S_{r+1}S_{r+2}...S_{k-1}(a_{k,0}-1,a_{k,1}...a_{k,m})\)
  • \(S_0S_1...S_k[n]=A\underbrace{BB...B}_n[n]\)

評価[]

(0,1)=\({\varepsilon_0}\)
(0,1)(0,0)(0,1)=\({\varepsilon_0×2}\)
(0,1)(1,0)=\({\varepsilon_0×{\omega}}\)
(0,1)(1,0)(0,1)=\({\varepsilon_0^2}\)
(0,1)(2,0)=\({\varepsilon_0^{\omega}}\)
(0,1)(2,0)(0,1)=\({\varepsilon_0^{\varepsilon_0}}\)
(0,1)(3,0)=\({\varepsilon_0^{\varepsilon_0^{\omega}}}\)
(0,1)(0,1)=\({\varepsilon_1}\)
(1,1)=\({\psi_0({\omega})}\)
(1,1)(0,1)=\({\psi_0({\omega+1})}\)
(1,1)(0,1)(1,1)=\({\psi_0({\omega×2})}\)
(1,1)(1,1)=\({\psi_0({\omega^2})}\)
(2,1)=\({\psi_0({\omega^{\omega}})}\)
(0,2)=\({\psi_0({\psi_0(0)})}\)
(0,0,1)=\({\psi_0({\Omega})}\)
(0,0,1)(0,1,0)=\({\psi_0({\Omega+1})}\)
(0,0,1)(0,1,0)(0,0,1)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
(0,0,1)(0,2,0)=\({\psi_0({\Omega+{\psi_0({\Omega+1})}})}\)
(0,0,1)(0,0,1)=\({\psi_0({\Omega×2})}\)
(1,0,1)=\({\psi_0({\Omega×{\omega}})}\)
(0,1,1)=\({\psi_0({\Omega×{\psi_0(0)}})}\)
(0,0,2)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
(0,0,0,1)=\({\psi_0({\Omega^2})}\)
(0,0...0,1)=\({\psi_0({\Omega^{\omega}})}\)

弱行列(仮)[]

表記[]

  • \(k,m,n,a_{x,y}:\)非負整数
  • \(S_x=(a_{x,0},a_{x,1}...a_{x,m})\)
  • 正規形:\(S_0S_1...S_k[n]\)

計算法[]

rule1:\(Z[n]=n+1\)
rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
rule3:
  • \(r=Max\{b|a_{b,0}<a_{k,0}\}\)
  • \({\Delta}=(d_0,d_1...d_m)\)
  • \(d_c=\begin{cases}a_{k,c}-a_{r,c}&\text{if} a_{r,c+1}<a_{k,c+1}\\0&\text{otherwise}\end{cases}\)
  • \(A=S_0S_1...S_{r-1}\)
  • \(B_0=S_rS_{r+1}...S_{k-1}\)
  • \(B_{b+1}=B_b+{\Delta}\)

\(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)

評価[]

(0,0)(1,1)=\({\varepsilon_0}\)
(0,0)(1,1)(0,0)(1,1)=\({\varepsilon_0×2}\)
(0,0)(1,1)(1,0)=\({\varepsilon_0×{\omega}}\)
(0,0)(1,1)(1,0)(2,1)=\({\varepsilon_0^2}\)
(0,0)(1,1)(1,0)(2,1)(2,0)=\({\varepsilon_0^{\omega}}\)
(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)=\({\varepsilon_0^{\varepsilon_0}}\)
(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)=\({\varepsilon_0^{\varepsilon_0^{\omega}}}\)
(0,0)(1,1)(1,1)=\({\varepsilon_1}\)
(0,0)(1,1)(2,1)=\({\psi_0({\omega})}\)
(0,0)(1,1)(2,1)(1,1)=\({\psi_0({\omega+1})}\)
(0,0)(1,1)(2,1)(1,1)(2,1)=\({\psi_0({\omega×2})}\)
(0,0)(1,1)(2,1)(2,1)=\({\psi_0({\omega^2})}\)
(0,0)(1,1)(2,1)(3,1)=\({\psi_0({\omega^{\omega}})}\)
(0,0)(1,1)(2,2)=\({\psi_0({\psi_0(0)})}\)
(0,0,0)(1,1,1)=\({\psi_0({\Omega})}\)
(0,0,0)(1,1,1)(1,1,0)=\({\psi_0({\Omega+1})}\)
(0,0,0)(1,1,1)(1,1,0)(2,2,1)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
(0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)=\({\psi_0({\Omega+{\psi_0({\Omega+1})}})}\)
(0,0,0)(1,1,1)(1,1,1)=\({\psi_0({\Omega×2})}\)
(0,0,0)(1,1,1)(2,1,1)=\({\psi_0({\Omega×{\omega}})}\)
(0,0,0)(1,1,1)(2,2,1)=\({\psi_0({\Omega×{\psi_0(0)}})}\)
(0,0,0)(1,1,1)(2,2,2)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
(0,0,0,0)(1,1,1,1)=\({\psi_0({\Omega^2})}\)
(0,0...0)(1,1...1)=\({\psi_0({\Omega^{\omega}})}\)

偽原始数列[]

小偽原始数列+大SZNO数列

表記[]

\((a_0,a_1,a_2...a_k)[n]\)

定義[]

rule1:\((0)[n]=n+1\)
rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
rule3:
  • \(p(b)=Max\{c|(a_c=0)∧(c<b)\}\)
  • \(i=Max\{b|(a_b=0)∧(b-1-p(b-1)<k-p(k))\}\)
  • \(A=(a_0,a_1,a_2...a_{i-1})\)
  • \(B=(a_i,a_{i+1},a_{i+2}...a_{k-1})\)
  • \((a_0,a_1,a_2...a_k)[n]=A\underbrace{\frown B\frown B...B}_n[n]\)

評価[]

(0,1)=\({\omega}\)
(0,1,0,0,1)=\({\omega×2}\)
(0,1,0,1)=(|0,1,0|0,1,0|0,1,0|...)=\({\omega^2}\)
(0,1,0,1,0,0,1,0,1)=\({\omega^2×2}\)
(0,1,0,1,0,1)=\({\omega^3}\)
(0,1,2)=(|0,1|0,1|0,1|...)=\({\omega^{\omega}}\)
(0,1,2,0,1)=\({\omega^{\omega+1}}\)
(0,1,2,0,1,0,1,2)=\({\omega^{\omega×2}}\)
(0,1,2,0,1,2)=\({\omega^{\omega^2}}\)
(0,1,2,3)=\({\omega^{\omega^{\omega}}}\)
(0,1,2...)=\({\varepsilon_0}\)

小多重階差数列システム[]

表記[]

\((a_1,a_2,a_3...a_k)[n]\)

計算法[]

rule1:\((1)[n]=n+1\)
rule2:\((a_1,a_2,a_3...a_{k-1},1)[n]=(a_1,a_2,a_3...a_{k-1})[n+1]\)
rule3:
  • \(a_{0,b}=a_b\)
  • \(a_{c+1,b}=a_{c,b+1}-a_{c,b}\)
  • \(d=Max\{c|a_{c,k-c}>1\}\)
  • \(e=Max\{b|a_{d,b}=1\}\)
  • \(A=(a_{d,1},a_{d,2},a_{d,3}...a_{d,e-1})\)
  • \(B=(a_{d,e},a_{d,e+1},a_{d,e+2}...a_{d,k-d-1})\)
  • \((f_{d,1},f_{d,2},f_{d,3}...)=A\frown \underbrace{B\frown B\frown B...B}_n\)
  • \(f_{c,1}=a_{c,1}\)
  • \(f_{c,b+1}=f_{c,b}+f_{c+1,b}\)
\((a_1,a_2,a_3...a_k)[n]=(f_{0,1},f_{0,2},f_{0,3}...)[n]\)

評価[]

(1,2)=(|1|1|1|...)=\({\omega}\)
(1,2,3)=(|1,2|1,2|1,2|...)=\({\omega^2}\)
(1,2,4)=(1[1,2])=(1[|1|1|1|...])=(1,2,3,4...)=\({\omega^{\omega}}\)
(1,2,4,5)=(|1,2,4|1,2,4|1,2,4|...)=\({\omega^{\omega+1}}\)
(1,2,4,5,7)=(1[1,2,1,2])=(1[1,2|1|1|1|...])=(1,2,4,5,6,7...)=\({\omega^{\omega×2}}\)
(1,2,4,7)=(1[1,2,3])=(1[|1,2|1,2|1,2|...])=(1,2,4,5,7,8,10...)=\({\omega^{\omega^2}}\)
(1,2,4,8)=(1[1[1,2]])=(1[1,2,3,4...])=(1,2,4,7,11...)=\({\omega^{\omega^{\omega}}}\)
(1,2,4,8,13)=(1[1,2,4,5])=(1[|1,2,4|1,2,4|1,2,4|...])=(1,2,4,8,9,11,15,16,18,22...)=\({\omega^{\omega^{\omega+1}}}\)
(1,2,4,8,13,20)=(1[1,2,4,5,7])=(1[1,2,4,5,6,7...])=(1,2,4,8,13,19,26...)=\({\omega^{\omega^{\omega×2}}}\)
(1,2,4,8,15)=(1[1,2,4,7])=(1[1,2,4,5,7,8,10])=(1,2,4,8,13,20,28,38...)=\({\omega^{\omega^{\omega^2}}}\)
(1,2,4,8,16)=(1[1,2,4,8])=(1[1,2,4,7,11...])=(1,2,4,8,15,26...)=\({\omega^{\omega^{\omega^{\omega}}}}\)
(1,2,4,8...2^n)=\({\varepsilon_0}\)

小SZ数列(SSZSs)[]

\(SpS+SZ\)

表記[]

\((a_0,a_1,a_2...a_k)[n]\

計算法[]

\(p(x)=\begin{cases}Max\{b|(b<x)∧(a_b<a_x)\}&\text{if} ∃b\\-1&\text{otherwise}\end{cases}\)
  • rule1: \((k=0)∧(a_k=0)\)
\((0)[n]=n^2\)
  • rule2: \((a_k=0)∧(p(k)=-1)\)
\((a_0,a_1,a_2...a_{k-1},a_k)[n]=(a_0,a_1,a_2...a_{k-1})[n^2]\)
  • rule3: \(p(k)=-1\)
\((a_0,a_1,a_2...a_k)[n]=(a_0,a_1,a_2...a_k-1)[n^2]\)
  • rule4: \(a_k-a_{p(k)}=1\)
\(r=p(p(k))+1\)
\(A=(a_0,a_1,a_2...a_{r-1})\)
\(B=(a_r,a_{r+1},a_{r+2}...a_{k-1})\)
\((a_0,a_1,a_2...a_k)[n]=A\frown \{B+n^2\}[n^2]\)
  • rule5:
\(r=p(k)\)
\(A=(a_0,a_1,a_2...a_{r-1})\)
\(B=(a_r,a_{r+1},a_{r+2}...a_{k-1},a_k-1)\)
\((a_0,a_1,a_2...a_k)[n]=A\frown \underbrace{B\frown B\frown B...B}_{n^2+1}[n^2]\)

素因数列システム[]

計算法[]

  • \(p_i:i\)番目の素数(\(p_0=2\))
  • \(□:0\)個以上の項
  • \(m,j:1\)以上の自然数
rule1: \(()[n]=n\)
rule2: \((□,1)[n]=(□)[n+1]\)
rule3: \((□,m×2)[n]=(□,\underbrace{m,m,...m}_n)[n]\)
rule4: \((□,m×p_j)[n]=(□,m×p_{j-1}^n)[n]\)

    ただし、\(m\)は\(p_j\)未満の素数で割り切れない。

未定義[]

小NZ数列システム(SNZSs)[]

\(L_1+NZ\)

(1)=[1,0]=\({\omega}\)
(1,0)=[1,1]=\({\omega+1}\)
(1,0,0)=[1,2]=\({\omega+2}\)
(0,1)=[2,0]=\({\omega×2}\)
(0,1,0)=[2,1]=\({\omega×2+1}\)
(0,0,1)=[3,0]=\({\omega×3}\)
(1,0,1)=[1,0,0]=\({\omega^2}\)
(1,0,0,1)=[1,1,0]=\({\omega^2+{\omega}}\)
(0,1,0,1)=[2,0,0]=\({\omega^2×2}\)
(1,0,1,0,1)=[1,0,0,0]=\({\omega^3}\)
(1,1)=[1[0]0]=\({\omega^{\omega}}\)
(1,1,0)=[1[0]1]=\({\omega^{\omega}+1}\)
(1,1,0,1)=[1[0],1,0]=\({\omega^{\omega}+{\omega}}\)
(1,1,0,1,0,1)=[1[0]1,0,0]=\({\omega^{\omega}+{\omega^2}}\)
(0,1,1)=[2[0]0]=\({\omega^{\omega}×2}\)
(1,0,1,1)=[1,0[0]0]=\({\omega^{\omega+1}}\)
(1,1,0,1,1)=[1[0]0[0]0]=\({\omega^{\omega×2}}\)
(1,1,1)=[1[1]0]=\({\omega^{\omega^2}}\)
(2)=[1[1,0]0]=\({\omega^{\omega^{\omega}}}\)
(2,0,1)=[1[1,0]1,0]=\({\omega^{\omega^{\omega}}+{\omega}}\)
(2,0,1,1)=[1[1,0]1[0]0]=\({\omega^{\omega^{\omega}}+{\omega^{\omega}}}\)
(0,2)=[2[1,0]0]=\({\omega^{\omega^{\omega}}×2}\)
(2,0,2)=[1[1,0]0[1,0]0]=\({\omega^{\omega^{\omega}×2}}\)
(2,1)=[1[1,1]0]=\({\omega^{\omega^{\omega+1}}}\)
(1,2)=[1[2,0]0]=\({\omega^{\omega^{\omega×2}}}\)
(2,1,2)=[1[1,0,0]0]=\({\omega^{\omega^{\omega^2}}}\)
(2,2)=[1[1[0]0]0]=\({\omega^{\omega^{\omega^{\omega}}}}\)
(3)=\({\omega^{\omega^{\omega^{\omega^{\omega}}}}}\)
(n)=\({\varepsilon_0}\)

第2小SZ数列(SSSZSs)[]

\(SPpS+SZ\)

((0,1)=\({\omega}\)
(0,1,0,2)=\({\omega^2}\)
(0,1,0,2,0,3,...)=(0,1,1)=\({\omega^{\omega}}\)
(0,1,1,0,2)=\({\omega^{\omega+1}}\)
(0,1,1,0,2,2)=\({\omega^{\omega^2}}\)
(0,1,1,1)=\({\omega^{\omega^{\omega}}}\)
(0,1,2)=\({\varepsilon_0}\)
(0,1,2,0,2)=\({\varepsilon_0}×{\omega}\)
(0,1,2,0,2,0,2,3)=\({\varepsilon_0^2}\)
(0,1,2,0,2,2)=\({\varepsilon_0^{\omega}}\)
(0,1,2,0,2,2,0,2,3)=\({\varepsilon_0^{\varepsilon_0}}\)
(0,1,2,0,2,3)=\({\varepsilon_1}\)
(0,1,2,0,2,3,0,3,4)=\({\varepsilon_2}\)
(0,1,2,1)=\({\psi_0({\omega})}\)
(0,1,2,1,0,2,3)=\({\psi_0({\omega+1})}\)
(0,1,2,1,0,2,3,2)=\({\psi_0({\omega}^2)}\)
(0,1,2,1,1)=\({\psi_0({\omega^{\omega}})}\)
(0,1,2,1,2)=\({\psi_0({\psi_0(0)})}\)
(0,1,2,1,3)=\({\psi_0({\Omega})}\)
(0,1,2,2)=\({\psi_0({\Omega^{\omega}})}\)
(0,1,2,3)=\({\psi_0({\Omega^{\varepsilon_0}})}\)
(0,1,2,3,...n)=\({\psi_0({\Omega^{\Omega}})}\)

大SZ数列(LSZSs)[]

\(pS+SZ\)、\({\Omega}\)行BM?

(0,1,1)=(|0,1|0,2|0,3|...)=\({\varepsilon_0}\)
(0,1,1,0,2,1)=(0,1,1|0,2|0,3|0,4|...)=\({\varepsilon_0^2}\)
(0,1,1,0,2,1,0,3,1)=(0,1,1,0,2,1|0,3|0,4|0,5|...)=\({\varepsilon_0^{\varepsilon_0}}\)
(0,1,1,0,2,2)=(|0,1,1|0,2,1|0,3,1|...)=\({\varepsilon_1}\)
(0,1,1,0,2,2,0,2,2)=(|0,1,1,0,2,2|0,2,1,0,3,2|0,3,1,0,3,2|...)=\({\varepsilon_2}\)
(0,1,1,0,2,2,0,3,2,)=(|0,1,1,0,2,2|0,3,1,0,4,2|0,5,1,0,6,2|...)=\({\psi_0({\Omega})}\)
(0,1,1,0,2,2,0,3,3)=(0,1,1|0,2,2|0,3,2|0,4,2|...)=\({\psi_0({\psi_1(0)})}\)
(0,1,1,1)=(|0,1,1|0,2,2|0,3,3|...)=\({\psi_0({\Omega_{\omega}})}\)=B(0,0,0)(1,1,1)
(0,1,1,1,0,2)=(|0,1,1,1|0,1,1,1|0,1,1,1|...)=B(0,0,0)(1,1,1)(1,0,0)
(0,1,1,1,0,2,2)=(|0,1,1,1|0,2,1,1|0,3,1,1|...)=B(0,0,0)(1,1,1)(1,1,0)
(0,1,1,1,0,2,2,1)=(0,1,1,1|0,2,2|0,3,3|0,4,4|...)=B(0,0,0)(1,1,1)(1,1,0)(2,2,1)
(0,1,1,1,0,2,2,2)=(0,1,1,1|0,2,2,1|0,3,3,1|...)=B(0,0,0)(1,1,1)(1,1,1)
(0,1,1,1,0,2,2,2,0,3)=(0,1,1,1|0,2,2,2|0,2,2,2|0,2,2,2|...)=B(0,0,0)(1,1,1)(2,0,0)
(0,1,1,1,0,2,2,2,0,3,3,3)=(0,1,1,1|0,2,2,2|0,3,3,2|0,4,4,2|...)=B(0,0,0)(1,1,1)(2,2,2)
(0,1,1,1,1)=(|0,1,1,1|0,2,2,2|0,3,3,3|...)=B(0,0,0,0)(1,1,1,1)
(0,1,2)=(0|1|1|1|...)=(0,0,0,...)(1,1,1,...)

ペア大SZNO数列システム(PLSZNOSs)[]

(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega}))\)
(0,0)(1,1)(0,0)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega}),0,{\beta_0}({\Omega}))\)
(0,0)(1,1)(0,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),1)\)
(0,0)(1,1)(0,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),1,2)\)
(0,0)(1,1)(0,0)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega}),1,{\beta_0}({\Omega}))\)
(0,0)(1,1)(0,0)(1,0)(2,1)(0,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),1,{\beta_0}({\Omega}),1)\)
(0,0)(1,1)(0,0)(1,0)(2,1)(0,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),2)\)
(0,0)(1,1)(0,0)(1,0)(2,1)(0,0)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega}),{\beta_0}({\Omega}))\)
(0,0)(1,1)(0,0)(1,0)(2,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0))\)
(0,0)(1,1)(0,0)(1,0)(2,1)(1,0)(2,0)(3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega}))))\)
(0,0)(1,1)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
(0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(2,1)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
(0,0)(1,1)(0,0)(1,1)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),0,{\beta_0}({\Omega})))\)
(0,0)(1,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1))\)
(0,0)(1,1)(1,0)(0,0)(1,0)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,0,{\beta_0}({\Omega})))\)
(0,0)(1,1)(1,0)(0,0)(1,0)(0,0)(1,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,0,{\beta_0}({\Omega}),1))\)
(0,0)(1,1)(1,0)(0,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,1))\)
(0,0)(1,1)(1,0)(0,0)(1,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,2))\)
(0,0)(1,1)(1,0)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,{\beta_0}({\Omega})))\)
(0,0)(1,1)(1,0)(0,0)(1,1)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,{\beta_0}({\Omega}),0,{\beta_0}({\Omega})))\)
(0,0)(1,1)(1,0)(0,0)(1,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,{\beta_0}({\Omega}),1))\)
(0,0)(1,1)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),2))\)
(0,0)(1,1)(1,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\omega}))\)
(0,0)(1,1)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
(0,0)(1,1)(1,0)(2,1)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
(0,0)(1,1)(1,0)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0)))\)
(0,0)(1,1)(1,0)(2,1)(2,0)(3,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,1)))\)
(0,0)(1,1)(1,0)(2,1)(2,0)(3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
(0,0)(1,1)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)


(0,0)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1))\)
(0,0)(1,1)(2,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},1,0,{\Omega}))\)
(0,0)(1,1)(2,0)(1,1)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,0,{\Omega},1))\)
(0,0)(1,1)(2,0)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,1))\)
(0,0)(1,1)(2,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,2))\)
(0,0)(1,1)(2,0)(3,1)=\({\beta_0}({\beta_0}({\Omega},1,{\beta_0}({\Omega})))\)
(0,0)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},1,{\Omega}))\)
(0,0)(1,1)(2,1)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,{\Omega},1))\)
(0,0)(1,1)(2,1)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},1,{\Omega},1,{\Omega}))\)
(0,0)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2))\)
(0,0)(1,1)(2,1)(2,0)(1,1)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,0,{\Omega},2))\)
(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,1))\)
(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},2,1,{\Omega}))\)
(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,1,{\Omega},2))\)
(0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,2))\)
(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},2,{\Omega}))\)
(0,0)(1,1)(2,1)(2,0)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,{\Omega},2))\)
(0,0)(1,1)(2,1)(2,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},3))\)
(0,0)(1,1)(2,1)(2,0)(3,0)=\({\beta_0}({\beta_0}({\Omega},{\omega}))\)
(0,0)(1,1)(2,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},{\Omega}))\)
(0,0)(1,1)(2,1)(3,0)=\({\beta_0}({\beta_0}({\beta_1(0)}))\)

偽バシク行列[]

(0,0)(1,1)=\({\varepsilon_0}\)
(0,0)(1,1)(0,0)(1,1)=|(0,0)(1,1)(0,0)|(1,0)(2,1)(1,0)|(2,0)(3,1)(2,0)|...=\({\varepsilon_1}\)
(0,0)(1,1)(2,0)=|(0,0)(1,1)|(0,0)(1,1)|(0,0)(1,1)|...=\({\psi_0({\omega})}\)
(0,0)(1,1)(2,0)(3,0)(4,1)=\({\psi_0({\psi_0(0)})}\)
(0,0)(1,1)(2,0)(3,1)=\({\psi_0({\Omega})}\)
(0,0)(1,1)(2,0)(3,1)(0,0)(1,1)=\({\psi_0({\Omega+1})}\)
(0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1)(2,0)(3,1)=\({\psi_0({\Omega×2})}\)
(0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(2,0)=\({\psi_0({\Omega×{\omega}})}\)
(0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(2,0)(3,1)=\({\psi_0({\Omega^2})}\)
(0,0)(1,1)(2,0)(3,1)(4,0)=\({\psi_0({\Omega^{\omega}})}\)
(0,0)(1,1)(2,0)(3,1)(4,0)(5,1)=\({\psi_0({\Omega^{\Omega}})}\)
(0,0)(1,1)(2,2)=|(0,0)(1,0)|(2,0)(3,1)|(4,0)(5,1)|...=\({\psi_0({\psi_1(0)})}\)
(0,0)(1,1)(2,2)(0,0)(1,1)(2,0)(3,1)(4,2)=\({\psi_0({\psi_1(0)×2})}\)
(0,0)(1,1)(2,2)(0,0)(1,1)(2,2)=\({\psi_0({\psi_1(1)})}\)
(0,0)(1,1)(2,2)(3,0)(4,1)=\({\psi_0({\psi_1({\Omega})})}\)
(0,0)(1,1)(2,2)(3,0)(4,1)(5,0)(6,1)(7,2)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
(0,0)(1,1)(2,2)(3,0)(4,1)(5,2)=\({\psi_0({\psi_1({\Omega_2})})}\)
(0,0)(1,1)(2,2)(3,3)=\({\psi_0({\psi_1({\psi_2(0)})})}\)
(0,0,0)(1,1,1)=\({\psi_0({\Omega_{\omega}})}\)
(0,0,0)(1,1,1)(0,0,0)(1,1,1)
=|(0,0,0)(1,1,1)(0,0,0)|(1,1,0)(2,2,1)(1,1,0)|(2,2,0)(3,3,1)(2,2,0)|...
(0,0,0)(1,1,1)(0,0,0)(1,1,0)=\({\psi_0({\Omega_{\omega}+1})}\)
(0,0,0)(1,1,1)(0,0,0)(1,1,0)(2,2,1)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
(0,0,0)(1,1,1)(0,0,0)(1,1,1)=\({\psi_0({\Omega_{\omega}×2})}\)
(0,0,0)(1,1,1)(2,0,0)=\({\psi_0({\Omega_{\omega}×{\omega}})}\)
(0,0,0)(1,1,1)(2,0,0)(0,0,0)(1,1,1)
=|(0,0,0)(1,1,1)(2,0,0)(0,0,0)|(1,1,0)(2,2,1)(3,0,0)(1,1,0)|(2,2,0)(3,3,1)(4,0,0)(2,2,0)|...

2次行列[]

(0)(1)(3)(5)=(0,0)|(1,0)(3,0)|(4,3)(6,0)|(7,6)(9,0)|...
(0,0)(1,0)(3,0)(4,3)=(0,0,0)|(1,0,0)(3,0,0)|(4,2,2)(6,0,0)|(7,4,4)(9,0,0)|...
(0,0,0)(1,0,0)(3,0,0)(4,2,2)=(0,0,0,0)|(1,0,0,0)(3,0,0,0)|(4,2,1,1)(6,0,0)|(7,4,2,2)(9,0,0,0)|...
(0)(1)(3)(6)=(0,0)(1,0)|(3,0)|(5,2)|(7,4)|...
(0,0)(1,0)(3,0)(5,1)=(0)(1)|(3)|(5)|(7)|...
(0)(1)(3)=(0,0)|(1,0)|(2,1)|(3,2)|...=B(0,0,0)(1,1,1)
(0)(1)(3)(3)=(0,0)|(1,0)(3,0)|(2,1)(4,0)|(3,2)(5,0)|...=B(0,0,0)(1,1,1)(1,1,1)
(0)(1)(3)(4)=B(0,0,0)(1,1,1)(2,0,0)
(0,0)(1,0)(3,0)(4,1)=(0,0)|(1,0)(3,0)|(4,0)(6,0)|(7,0)(9,0)|...=B(0,0,0)(1,1,1)(2,1,0)
(0,0)(1,0)(3,0)(4,1)(3,0)=(0,0)|(1,0)(3,0)(4,1)|(2,1)(4,0)(5,2)|(3,2)(5,0)(6,3)|...
(0,0)(1,0)(3,0)(4,1)(3,0)(4,1)=B(0,0,0)(1,1,1)(2,1,0)(1,1,1)(2,1,0)
(0,0)(1,0)(3,0)(4,1)(4,0)=B(0,0,0)(1,1,1)(2,1,0)(2,0,0)
(0,0)(1,0)(3,0)(4,1)(5,0)=B(0,0,0)(1,1,1)(2,1,0)(3,0,0)
(0,0)(1,0)(3,0)(4,1)(6,0)=(0,0)(1,0)(3,0)|(4,1)|(5,2)|(6,3)|...=B(0,0,0)(1,1,1)(2,1,0)(3,2,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)=(0,0)|(1,0)(3,0)|(4,1)(6,0)|(7,2)(9,0)|...=B(0,0,0)(1,1,1)(2,1,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(3,0,0)=(0,0,0)|(1,0,0)(3,0,0)(4,1,1)|(2,1,0)(4,0,0)(5,2,1)|(3,2,0)(5,0,0)(6,3,1)|...=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)
(0,0)(1,0)(3,0)(4,2)=(0,0,0)|(1,0,0)(3,0,0)|(4,1,1)(6,0,0)|(7,2,2)(9,0,0)|...
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)=(0,0,0)(1,0,0)(3,0,0)|(4,1,1)|(5,2,1)|(6,3,1)|...
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,0,0)=B(0,0,0)(1,1,1)(2,1,1)(3,0,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,1,0)=B(0,0,0)(1,1,1)(2,1,1)(3,1,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,1,1)=B(0,0,0)(1,1,1)(2,1,1)(3,1,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,0)=B(0,0,0)(1,1,1)(2,2,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,0)(7,0,0)=B(0,0,0)(1,1,1)(2,2,0)(3,3,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(3,0,0)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(3,0,0)(4,1,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(4,1,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(4,1,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,1)(3,2,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)(2,2,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(6,0,0)=B(0,0,0)(1,1,1)(2,2,1)(3,0,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(6,3,1)=B(0,0,0)(1,1,1)(2,2,1)(3,3,1)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)=B(0,0,0)(1,1,1)(2,2,2)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(4,1,1)(6,0,0)=B(0,0,0)(1,1,1)(2,2,2)(2,1,1)(3,2,2)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(6,0,0)=B(0,0,0)(1,1,1)(2,2,2)(2,2,2)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,0,0)=B(0,0,0)(1,1,1)(2,2,2)(3,0,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,1,0)=B(0,0,0)(1,1,1)(2,2,2)(3,1,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,1,1)(8,2,0)=B(0,0,0)(1,1,1)(2,2,2)(3,1,1)(4,2,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,1,1)(9,0,0)=B(0,0,0)(1,1,1)(2,2,2)(3,1,1)(4,2,2)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,2,0)=B(0,0,0)(1,1,1)(2,2,2)(3,2,0)
(0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,2,2)(9,0,0)=B(0,0,0)(1,1,1)(2,2,2)(3,3,3)
(0,0)(1,0)(3,0)(4,2)=B(0,0,0,0)(1,1,1,1)


(0,0)(1,0)(3,0)(5,1)=B(0(0)0)(1(0)1)
(0,0)(1,0)(3,0)(5,1)(3,0)=(0,0)|(1,0)(3,0)(5,1)|(2,1)(4,0)(6,2)|(3,2)(5,0)(7,3)|...
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,2)=(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)|(4,0,0)|(6,1,1)|(8,2,2)|...
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)=(0,0)(1,0)(3,0)(5,1)(2,1)|(4,0)|(6,1)|(8,2)|...
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,2)=(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)|(6,1)|(8,1)|(10,1)|...
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)=(0,0)(1,0)(3,0)(5,1)(2,1)|(4,0)(6,1)|(8,0)(10,1)|(12,0)(14,1)|...
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,0)=(0,0)(1,0)(3,0)(5,1)|(2,1)(4,0)(6,1)|(7,6)(9,0)(11,1)|(12,11)(14,0)(16,1)|...
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)=(0,0)(1,0)(3,0)(5,1)|(2,1)(4,0)(6,1)|(3,2)(5,0)(7,1)|(4,3)(6,0)(8,1)|...=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,1)(7,0)(9,1)=B(0,0,0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(3,2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(6,0)=(0,0)(1,0)(3,0)(5,1)|(2,1)(4,0)(6,1)(4,0)|(5,4)(7,0)(9,1)(7,0)|(8,7)(10,0)(12,1)(10,0)|...
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,2)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(3,2,1(0)1)(3,2,1(0)0)(4,2,0(0)0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,0)(4,0,0)(5,2,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,1(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,3)=B(0,0,0,0(0)0)(1,1,1,1(0)1)(1,1,1,0(0)0)(2,2,2,2(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(6,1)=B(0(0)0)(1(0)1)(1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,0)=B(0(0)0)(1(0)1)(2(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,1)=B(0,0(0)0)(1,1(0)1)(2,1(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,1)(7,0)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,1)(7,0)(9,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,2)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)1)(4,2,0(0)0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,0)(5,2,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,1(0)0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,0)(5,2,1)(7,0,0)(9,1,0)=B(0,0,0,0(0)0)(1,1,1,1(0)1)(2,1,1,0(0)0)(3,2,2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,3)=B(0,0,0,0(0)0)(1,1,1,1(0)1)(2,1,1,1(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(6,0)(8,1)=B(0,0(0)0)(1,1(0)1)(2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(6,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(7,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)0)(3,1(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,0)(10,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)=B(0(0)0)(1(0)1)(2(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(4,0)(6,1)(8,1)=B(0(0)0)(1(0)1)(2(0)1)(1(0)1)(2(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,0)(8,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(2,2(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,1)(8,0)(10,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)1)(2,2,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,1)(8,1)=B(0(0)0)(1(0)1)(2(0)1)(2(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(8,0)(10,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(3,1(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(8,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(3,2(0)0)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(10,0)(12,1)(14,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(3,2(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(10,1)=B(0(0)0)(1(0)1)(2(0)1)(3(0)1)
(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,2)=B(0(0)0)(1(0)1)(2(0)2)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)=B(0(0)0,0)(1(0)1,1)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(4,0,0)(6,1,0)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(4,0,0)(6,1,1)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)(2(0)2,1)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(5,0,0)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)(2(0)2,1)(2(0)0,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(5,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(1,1(0)1,0)(2,2(0)2,1)(2,1(0)0,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(6,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(1,1(0)1,0)(2,2(0)2,1)(2,2(0)0,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(6,1,0)(8,2,1)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)(2(0)2,1)(2(0)2,0)(3(0)3,1)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(6,1,1)=B(0(0)0,0)(1(0)1,1)(1(0)1,1)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(7,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)0,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(9,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,1(0)0,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(10,0,0)(12,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,1(0)1,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(10,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)0,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(12,0,0)(14,1,0)=B(0,0,0(0)0,0)(1,1,1(0)1,1)(2,1,1(0)1,0)(3,2,1(0)1)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(12,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)1,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(12,2,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)2,0)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,1)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)1,1)
(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,2(0)0,0)

小Y数列[]

小多重階差数列の拡張

(1,3)=(1[2])=(1[1[1[...]]])=(1,2,4...)=\({\varepsilon_0}\)
(1,3,4)=(|1,3|1,3|1,3|...)=\({\varepsilon_0×{\omega}}\)
(1,3,4,7)=(1[2,1[2]])=(1[2,1[1[1[...]]]])=(1,3,4,6,10...)=\({\varepsilon_0^2}\)
(1,3,4,7,11,18)=(1[2,1[2,1[2]]])=\({\varepsilon_0^{\varepsilon_0}}\)
(1,3,5)=(1[2,2])=(1[2,1[2,1[2...]]])=(1,3,4,7,11,18...)=\({\varepsilon_1}\)
(1,3,6)=(1[2[1]])=(1[2,2,2...])=(1,3,5,7...)=\({\psi_0({\omega})}\)
(1,3,6,12)=(1[2[1[2]]])=\({\psi_0({\psi_0(0)})}\)
(1,3,8)=(1[2[3]])=(1[2[1[2[1[2[...]]]]]])=\({\psi_0({\Omega})}\)
(1[2[3],2])=\({\psi_0({\Omega+1})}\)
(1[2[3],2[3]])=\({\psi_0({\Omega×2})}\)
(1[2[3,1]])=\({\psi_0({\Omega×{\omega}})}\)
(1[2[3,3]])=\({\psi_0({\Omega^2})}\)
(1[2[3[1]]])=\({\psi_0({\Omega^{\omega}})}\)
(1[2[3[4]]])=\({\psi_0({\Omega^{\Omega}})}\)
(1,3,9)=(1[2[4]])=(1[1,2]₂)=\({\psi_0({\psi_1(0)})}\)
(1[2[4],2])=(1[2[4],1[2[4],1[2[4]...]]])=\({\psi_0({\psi_1(0)+1})}\)
(1[2[4],2[3]])=(1[2[4],2[(1[2[4],2[(1[2[4],2[...]])]])]])=\({\psi_0({\psi_1(0)+{\Omega}})}\)
(1[2[4],2[4]])=(1[2[4],2[3[4[...]]]])=\({\psi_0({\psi_1(0)×2})}\)
(1[2[4,1]])=\({\psi_0({\psi_1(0)×{\omega}})}\)
(1[1,2,1]₂)=(1[2[4[5]]])=(1[2[4[1[2[4[1[2[4[...]]]]]]]]])
(1[2[4,3]])=(1[2[4,1[2[4,1[2[4...]]]]]])=\({\psi_0({\psi_1(0)×{\Omega}})}\)
(1[2[4,3[5]]])=\({\psi_0({\psi_1(0)^2})}\)
(1[2[4,4]])=\({\psi_0({\psi_1(1)})}\)
(1[2[4,5]])=\({\psi_0({\psi_1({\omega})})}\)
(1[2[4[5]]])=\({\psi_0({\psi_1({\Omega})})}\)
(1[1,2,1,2]₂)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
(1,3,9,26)=(1[2[4[7]]])=(1[1,2,3]₂)=(1[1,2,1,2,1,2...]₂)=(1[2[4[5[7[8[10[...]]]]]]])=\({\psi_0({\psi_1({\Omega_2})})}\)
(1[2[4[7],4[7]]])=\({\psi_0({\psi_1({\Omega_2×2})})}\)
(1[2[4[7,4]]])=\({\psi_0({\psi_1({\Omega_2×{\Omega}})})}\)
(1[2[4[7,7]]])=\({\psi_0({\psi_1({\Omega_2^2})})}\)
(1[2[4[7[1]]]])=\({\psi_0({\psi_1({\Omega_2^{\omega}})})}\)
(1[2[4[7[8]]]])=(1[1,2,3,1]₂)=\({\psi_0({\psi_1({\Omega_2^{\Omega}})})}\)
(1[1,2,3,1,2]₂)=\({\psi_0({\psi_1({\Omega_2^{\psi_1(0)}})})}\)
(1[1,2,3,4]₂)=(1[2[4[7[11]]]])=\({\psi_0({\psi_1({\Omega_2^{\Omega_2}})})}\)
(1[1[1,2]₁]₂)=\({\psi_0({\psi_1({\psi_2(0)})})}\)

小変形Y数列[]

(1,2,5)=(1[1[2]])=(1[1[1]₂]₁)=(1[1[1[1[...]]]])=(1,2,4,8...)=\({\varepsilon_0}\)
(1,2,5,10)=(1[1[2,2]])=(1[1[2,1[2,1[2...]]]])=\({\varepsilon_1}\)
(1,2,5,11)=(1[1[2[1]]])=\({\psi_0({\omega})}\)
(1,2,5,13)=(1[1[2[3]]])=\({\psi_0({\Omega})}\)
(1,2,5,14)=(1[1[2[4]]])=(1[1[1,2]₂]₁)=\({\psi_0({\psi_1(0)})}\)
(1,2,5,14,33)=(1[1[2[4,4]]])=\({\psi_0({\psi_1(1)})}\)
(1,2,5,14,40)=(1[1[2[4[7]]]])=(1[1[1,2,3]₂]₁)=\({\psi_0({\psi_1({\Omega_2})})}\)
(1,2,5,14,40,112)=(1[1[2[4[7[11]]]]])=(1[1[1,2,3,4]₂]₁)=\({\psi_0({\psi_1({\Omega_2^{\Omega_2}})})}\)
(1,2,5,14,41)=(1[1[2[4[8]]]])=(1[1[1,2,4]₂]₁)=(1[1[1[1,2]₁]₂]₁)=\({\psi_0({\psi_1({\psi_2(0)})})}\)

変形Y数列[]

[2]

(1,2,4)=(1[1,2])=(1,2,3,4...)=\({\varepsilon_0}\)
(1,2,4,2)=(|1,2,4|1,2,4|1,2,4|...)=\({\varepsilon_0×{\omega}}\)
(1,2,4,2,4)=(1,2,4|2,3,4|,2,3,4|...)=\({\varepsilon_0^2}\)
(1,2,4,3)=\({\varepsilon_0^{\omega}}\)
(1,2,4,3,5)=\({\varepsilon_0^{\varepsilon_0}}\)
(1,2,4,4)=(1|2,4|3,5|4,6|...)=\({\varepsilon_1}\)
(1,2,4,5)=\({\varepsilon_{\omega}}\)
(1,2,4,5,7)=\({\varepsilon_{\varepsilon_0}}\)
(1,2,4,6)=\({\psi_0({\Omega})}\)
(1,2,4,6,4)=\({\psi_0({\Omega+1})}\)
(1,2,4,6,4,6)=\({\psi_0({\Omega×2})}\)
(1,2,4,6,5)=\({\psi_0({\Omega×{\omega}})}\)
(1,2,4,6,6)=\({\psi_0({\Omega^2})}\)
(1,2,4,6,7)=\({\psi_0({\Omega^{\omega}})}\)
(1,2,4,6,8)=\({\psi_0({\Omega^{\Omega}})}\)
(1,2,4,7)=\({\psi_0({\psi_1(0)})}\)
(1,2,4,7,11...)=\({\psi_0({\Omega_{\omega}})}\)

ここまで-1-HSと同じ

(1,2,4,8)=(1[1[1,2]])=\({\psi_0({\Omega_{\omega}})}\)
(1,2,4,8,4)=\({\psi_0({\Omega_{\omega}}+1)}\)
(1,2,4,8,4,6)=\({\psi_0({\Omega_{\omega}}+{\Omega})}\)
(1,2,4,8,4,7)=\({\psi_0({\Omega_{\omega}+{\psi_1(0)}})}\)
(1,2,4,8,4,8)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
(1,2,4,8,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\omega}}})}\)
(1,2,4,8,6)=\({\psi_0({\Omega_{\omega}}+{\psi_1({\Omega_{\omega}})×{\Omega}})}\)
(1,2,4,8,6,10)=\({\psi_0({\Omega_{\omega}+psi_1({\Omega_{\omega}})^2})}\)
(1,2,4,8,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
(1,2,4,8,7,9)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega}})}})}\)
(1,2,4,8,7,10)=(1,2|4,8,7|9,13,12|14,18,17|...)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}\)
(1,2,4,8,7,11)=\({\psi_0({\Omega_{\omega}}+{\psi_1({\Omega_{\omega}+{\psi_2(0)}})})}\)
(1,2,4,8,7,12)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_2({\Omega_{\omega}})}})}})}\)
(1,2,4,8,8)=(1,2|4,8|7,12|11,17|...)=\({\psi_0({\Omega_{\omega}×2})}\)=B(0,0,0)(1,1,1)(1,1,1)

[]

N→Z変換[]

 項を0の列に、セパレータを1に変換。

計算例[]

\((3,3,0,2,1)→(0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0)\)

前例(推測)[]

  • 巨大数探索スレッド10の>>638
  • 巨大数探索スレッド11.75の>>1

S→Z変換[]

セパレータを0に変換。

計算例[]

\((0,1,2,3,1,2,2)→(0,1,0,2,0,3,0,4,0,2,0,3,0,3)\)
\((0,0,0)(1,1,1)(2,2,0)(3,1,1)→(0,1,1,1,0,2,2,2,0,3,3,1,0,4,2,2)\)

前例[]

不明

S→Z/N→O変換[]

セパレータを0に、項を1の列に変換。

計算例[]

\((2,2,1,1,1,0,3)→(1,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,0,1,1,1,1)\)

セパレータを先頭に置くことでS型にすることができる。

前例[]

不明

  • \(SpS+SZNO=pS/BW\)

N→B変換[]

\(n→n,n+1\)

計算例[]

\((0,1,2)→(0,1,1,2,2,3)\)

前例[]

  • \(LPpS=pS+NB\)
  • \(m-DS=pS+NB×(m+2)\)

N→L変換[]

\(n→0,1,2...n\)

計算例[]

\((3,1,2)→(0,1,2,3,0,1,0,1,2)\)

計算例[]

  • \(SPpS=SpS+NL\)
  • \(PpS=pS+NL\)

階差表記[]

  • 初項と階差を使って数列を書き表す。
例:(1,2,3,5,6,8,11)=(1[1,1,2,1,2,4])

  • 数列システムを作るのに使う場合、0以下の項を含めないほうが便利である(多分)。
例:(1,2,4,5,5,7,10)=(1[1,2,1],5[2,3])
(1[1[1[...]]])の一般項は\(2^n\)

拡張階差表記[]

  • \(a_1[a_2,a_3...]_1=a_1[a_2,a_3...]=a_1,a_1+a_2,a_1+a_2+a_3...\)
  • \(a_1[a_2,a_3...]_{m+1}=a_1[(a_1+a_2)[(a_1+a_2+a_3)[...]_m]_m]_m\)
例:\(1[1,1,1]_3=1[2[3[4]_2]_2]_2=1[2[3[7]_1]_2]_2=1[2[3,10]_2]_2=1[2[5[15]_1]_1]_2=1[2[5,20]_1]_2=\)
  \(1[2,7,27]_2=1[3[10[37]_1]_1]_1=1[3[10,47]_1]_1=1[3,13,60]_1=1,4,17,77\)


\((1[1]_1)=(1,2)\)
\((1[1[1]_2]_1)=(1,2,5)\)
\((1[1[1[1]_3]_2]_1)=(1,2,5,16)\)
\((1[1[1[1[1]_4]_3]_2]_1)=(1,2,5,16,68)\)
\((1[1[1[1[1[1]_5]_4]_3]_2]_1)=(1,2,5,16,68,400)?\)
一般項は不明

極限[]

\(Max(A)\)を\(A\)の最大の要素とし、\(\text{Row}(A)\)を\(A\)の行数とする。

数極限[]

システム\(X\)の標準形の列\(A\)と\(B\)について\(Max(A)>Max(B)⇒A>B\)が成り立つとき、

\(X\)は数極限である。

行極限[]

システム\(X\)の標準形の行列\(A\)と\(B\)について\(\text{Row}(A)>\text{Row}(B)⇒A>B\)が成り立つとき、

\(X\)は行極限である。

数極限のシステム:ベクレミシェフの虫、原始数列

数極限でないシステム:大1次数列、バシク行列

行極限のシステム:バシク行列

小極限[]

システム\(X\)での極限順序数\({\alpha}\)に対応する標準列が\({\Delta}=0\)であるとき、

\(X\)において\({\alpha}\)は小極限である。


PS:\((0,0)(1,1)(2,1)(3,0)={\varphi({\omega},0)},Δ=(0,0)⇒\)PSにおいて\({\varphi({\omega},0)}\)は小極限である

大極限[]

システム\(X\)での極限順序数\({\alpha}\)に対応する標準列が\({\Delta}≠0\)であるとき、

\(X\)において\({\alpha}\)は大極限である。

PLPS:\((0,0)(1,1)={\varphi({\omega},0)},Δ=(1,0)⇒\)LPPSにおいて\({\varphi({\omega},0)}\)は大極限である

S型[]

\((0,1,2,...n)\)を極限とする数列システムをS型とする。

例:小偽原始数列、原始数列、大偽原始数列、大SZNO数列

W型[]

\((n)\)を極限とする数列システムをW型とする。 例:小1次数列、ベクレミシェフの虫

RN変換[]

行極限の行列から数極限の行列への変換

\((a_1,a_2,...a_k)→(1,...(a_1個)...1)+(1,...(a_2個)...1)+...(1,...(a_k個)...1)\)

\((0)(1)(2)(3)→\begin{pmatrix}0&1&1&1\\0&0&1&1\\0&0&0&1\end{pmatrix}\)

\(\begin{pmatrix}0&1&2&3\\0&1&1&1\end{pmatrix}→\begin{pmatrix}0&2&2&2\\0&0&1&1\\0&0&0&1\end{pmatrix}\)

\(\begin{pmatrix}0&1&2&3\\0&1&2&3\end{pmatrix}→\begin{pmatrix}0&2&2&2\\0&0&2&2\\0&0&0&2\end{pmatrix}\)

\(RN^{-1}=RN?\)