定義済み[]
大SZNO数列システム(LSZNOSs)[]
\(BW+SZNO(=SpS+SZNO×2)\)
表記[]
\((a_0,a_1,a_2...a_k)[n]\)
サブルール[]
- 大小関係
- \(A<B⇔∃C[((A<C)∨(A=C))∧(∃c[(\text{ex}(B,c)=C)])]\)
※\(A、B、C\)は列
- 展開
列\(S=(s_0,s_1,s_2...s_m)\)と自然数\(b\)に対して\(\text{ex}(S,b)\)を以下の通り定義する。
- \(q(0)=\begin{cases}Max\{c|s_{c-1}=s_m-2\}&\text{if} ∃c\\0&\text{otherwise}\end{cases}\)
- \(q(c+1)=min\{d|(q(c)<d)∧(s_d=s_m-1)\}\)
- \(l=Max\{c|q(c)=Max\{d|s_d=s_m-1\}\}\)
- \(S_c=(s_{q(c)},s_{q(c)+1},s_{q(c)+2}...s_{q(c+1)-1})\)
- \(S_l=(s_{q(l)},s_{q(l)+1},s_{q(l)+2}...s_m)\)
- \(i=\begin{cases}Max\{q(c)|S_c<S_l\}&\text{if} ∃q(c)\\q(0)&\text{otherwise}\end{cases}\)
- \(A=(s_0,s_1,s_2...s_{i-1})\)
- \(B=(s_i,s_{i+1},s_{i+2}...s_{m-1})\)
- \(\text{ex}(S,b)=A\frown\underbrace{B\frown B\frown B...B}_b\)
計算法[]
- rule1:\((0)[n]=n+1\)
- rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
- rule3:\(\text{ex}((a_0,a_1,a_2...a_k),n)[n]\)
評価[]
- (0,1)=\({\omega}={\beta_0(1)}\)
- (0,1,0,0,1)=\({\omega×2}={\beta_0(1,0,1)}\)
- (0,1,0,1)=\({\omega^2}={\beta_0(1,1)}\)
- (0,1,1)=\({\omega^{\omega}}={\beta_0(2)}\)
- (0,1,1,0,1,0,1,1)=\({\omega^{\omega×2}}={\beta_0(2,1,2)}\)
- (0,1,1,0,1,1)=\({\omega^{\omega^2}}={\beta_0(2,2)}\)
- (0,1,2)=\({\varepsilon_0}={\beta_0({\omega})}={\beta_0({\beta_0(1)})}\)
- (0,1,2,1)=\({\psi_0({\omega})}={\beta_0({\beta_0(1,0)})}\)
- (0,1,2,1,2)=\({\psi_0({\Omega})}={\beta_0({\beta_0(1,1)})}\)
- (0,1,2,2)=\({\psi_0({\Omega^{\omega}})}={\beta_0({\beta_0(2)})}\)
- (0,1,2,3)=\({\psi_0({\Omega^{\psi_0(0)}})}={\beta_0({\beta_0({\beta_0(1)})})}\)
- (0,1,2,3,...n)=\({\psi_0({\Omega^{\Omega}})}={\beta_0({\Omega})}\)
小偽原始数列システム(SPpSs)[]
表記[]
- \((a_0,a_1,a_2...a_k)[n]\)
定義[]
- rule1:\((0)[n]=n+1\)
- rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
- rule3:
- \(i=Max\{b|a_b=0\}\)
- \(A=(a_0,a_1,a_2...a_{i-1})\)
- \(B=(a_i,a_{i+1},a_{i+2}...a_{k-1})\)
- \((a_0,a_1,a_2...a_k)[n]=A\frown \underbrace{B\frown B\frown...B}_n[n]\)
評価[]
- (0,1,2,3...)=\({\omega^{\omega}}\)
小偽行列システム(SPMs)[]
表記[]
- \(S_x=(a_{x,0},a_{x,1}...a_{x,m})\)
- 正規形:\(S_0S_1S_2...S_k[n]\)
定義[]
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1S_2...S_{k-1}Z[n]=S_0S_1S_2...S_{k-1}[n+1]\)
- rule3:
- \(i=Max\{b|(b<k)∧(∀c[(0<a_{k,c})⇒(a_{b,c}<a_{k,c})])∧(∃d[(0<a_{k,d})∧(a_{b-1,d}≥a_{b,d})])\}\)
- \({\Delta}=(d_0,d_1,d_2...d_m)\)
- \(d_b=\begin{cases}a_{i,b}-a_{k,b}&\text{if}(0<a_{k,b+1})∧(b<m)\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1S_2...S_{i-1}\)
- \(B_0=S_iS_{i+1}S_{i+2}...S_{k-1}\)
- \(B_{b+1}=B_b+{\Delta}\)
- \(S_0S_1S_2...S_k[n]=AB_0B_1B_2...B_n[n]\)
評価[]
- (0,0)(1,1)=\({\omega^{\omega}}\)
- (0,0)(1,1)(2,0)=|(0,0)(1,1)|(0,0)(1,1)|(0,0)(1,1)|...=\({\omega^{\omega+1}}\)
- (0,0)(1,1)(2,0)(3,1)=(0,0)(1,1)|(2,0)|(3,0)|(4,0)|...=\({\omega^{\omega×2}}\)
- (0,0)(1,1)(2,2)=|(0,0)(1,1)|(2,0)(3,1)|(4,0)(5,1)|...=\({\omega^{\omega^2}}\)
- (0,0)(1,1)(2,2)(3,0)=\({\omega^{\omega^2+1}}\)
- (0,0)(1,1)(2,2)(3,0)(4,1)=\({\omega^{\omega^2+{\omega}}}\)
- (0,0)(1,1)(2,2)(3,0)(4,1)(5,2)=\({\omega^{\omega^2×2}}\)
- (0,0)(1,1)(2,2)(3,3)=\({\omega^{\omega^3}}\)
- (0,0,0)(1,1,1)=\({\omega^{\omega^{\omega}}}\)
- (0,0,0)(1,1,1)(2,0,0)=\({\omega^{\omega^{\omega}+1}}\)
- (0,0,0)(1,1,1)(2,0,0)(3,1,1)=\({\omega^{\omega^{\omega}×2}}\)
- (0,0,0)(1,1,1)(2,2,0)=\({\omega^{\omega^{\omega+1}}}\)
- (0,0,0)(1,1,1)(2,2,0)(3,3,1)=\({\omega^{\omega^{\omega×2}}}\)
- (0,0,0)(1,1,1)(2,2,2)=\({\omega^{\omega^{\omega^2}}}\)
- (0,0,0,0)(1,1,1,1)=\({\omega^{\omega^{\omega^{\omega}}}}\)
- (0,0,0...0)(1,1,1...1)=\({\varepsilon_0}\)
大偽原始数列システム(LPpSs)[]
表記[]
\((a_0,a_1,・・・a_k)[n]\)
計算法[]
(1)\((\#,0)[n]=(\#)[n+1]\)
(2)\(a_{i-1}≥a_i\)かつ\(i<k\)かつ\(a_i<a_k\)を満たす最大の\(i\)を\(j\)とする(iが存在しない場合、j=0とする)。
- \(A=(a_0,a_1,・・・a_{j-1})\)
- \(B_0=(a_j,a_{j+1},・・・a_{k-1})\)
- \(x=a_k-a_j-1\)
- \(B_m=B_0+(x×m)\) (\(B_0\)のすべての項に足す)
\((a_0,a_1,・・・a_k)[n]=\{A\frown B_0\frown B_1\frown...B_n\}[n+1]\)
評価[]
- (0,1)=(0[1])=\({\omega}\)
- (0,1,0,1)=(0[1],0[1])=\({\omega×2}\)
- (0,1,1)=(0[1],1)=\({\omega^2}\)
- (0,1,1,2)=(1[1],1[1])=\({\omega^{\omega}}\)
- (0,1,1,2,1)=(0[1],1[1],1)=\({\omega^{\omega+1}}\)
- (0,1,1,2,1,2)=(0[1],1[1],1[1])=\({\omega^{\omega×2}}\)
- (0,1,1,2,2)=(0[1],1[1],2)=\({\omega^{\omega^2}}\)
- (0,1,1,2,2,3)=(0[1],1[1],2[1])=\({\omega^{\omega^{\omega}}}\)
- (0,1,2)=(0[1,1])=\({\varepsilon_0}\)
- (0,1,2,1)=(0[1,1],1)=\({\varepsilon_0×{\omega}}\)
- (0,1,2,1,2,3)=(0[1,1],1[1,1])=\({\varepsilon_0^2}\)
- (0,1,2,1,2,3,2)=(0[1,1],1[1,1],2)=\({\varepsilon_0^{\omega}}\)
- (0,1,2,1,2,3,2,3,4)=(0[1,1],1[1,1],2[1,1])=\({\varepsilon_0^{\varepsilon_0}}\)
- (0,1,2,2)=(0[1,1],2)=\({\varepsilon_1}\)
- (0,1,2,2,3)=(0[1,1],2[1])=\({\psi({\omega})}\)
- (0,1,2,2,3,4)=(0[1,1],2[1,1])=\({\psi({\psi(0)})}\)
- (0,1,2,2,3,4,4,5,6)=(0[1,1],2[1,1],4[1,1])=\({\psi({\psi({\psi(0)})})}\)
- (0,1,2,3)=(0[1,1,1])=\({\psi({\Omega})}\)
- (0,1,2,・・・n)=(0[1,1,...1])=\({\psi({\Omega^{\omega}})}\)
※限界は(0,2,3,4,・・・n)=(0[2,1,1,...1])=\({\psi({\Omega^{\omega}×2})}\)だと思われる。
新LPpS[]
表記[]
\((a_0,a_1,a_2...a_k)[n]\)
定義[]
- rule1:\((0)[n]=n+1\)
- rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1},0)[n+1]\)
- rule3:
- \(i=\begin{cases}k-1&\text{if} a_k-a_{k-1}=1\\Max\{b|(a_b<a_k)∧(a_{b-1}≥a_b))\}&\text{otherwise}\end{cases}\)
- \(A=(a_0,a_1,a_2...a_{i-1})\)
- \(B_b=(a_i,a_{i+1},a_{i+2}...a_{k-1})+(a_k-a_i)×b\)
- \((a_0,a_1,a_2...a_k)[m]=A\frown B_0\frown B_1\frown B_2...B_n[n]\)
評価[]
- (0,1,2)=(0|1|1|1|...)=\({\omega^{\omega}}\)
- (0,1,2,2)=(|0,1,2|1,2,3|2,3,4|...)=\({\varepsilon_0}\)
- (0,1,2,2,2)=\({\varepsilon_1}\)
- (0,1,2,3)=\({\psi_0({\omega})}\)
- (0,1,2,3,2)=\({\psi_0({\omega+1})}\)
- (0,1,2,3,2,3,4,5)=\({\psi_0({\psi_0({\omega})})}\)
- (0,1,2,3,3)=\({\psi_0({\Omega})}\)
- (0,1,2,3,3,2)=\({\psi_0({\Omega+1})}\)
- (0,1,2,3,3,2,3,4,5,5)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
- (0,1,2,3,3,3)=\({\psi_0({\Omega×2})}\)
- (0,1,2,3,4)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,2,3,4,3,4,5,6,7)=\({\psi_0({\Omega×{\psi_0({\Omega×{\omega}})}})}\)
- (0,1,2,3,4,4)=\({\psi_0({\Omega^2})}\)
- (0,1,2...)=\({\psi_0({\Omega^{\omega}})}\)
大偽行列システム(LPMs)[]
表記[]
- \(k,m,n:\)自然数
- \(a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1},...a_{x,m})\)
- 正規形\(:S_0,S_1,...S_k[n]\)
定義[]
- \(Z:\)零ベクトル
- \(b,c,e,x,y:\)非負整数
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:
- \(dim(x)=Max\{b|a_{x,b}>0\}\)
- \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
- \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})∧(∃c[p_y^c(x)=b])\}\)
- \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
- \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
- \(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
- \(r=\begin{cases}Max\{b|∀y,y≥dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\\\Max\{b|(∀y,y≥dim(k)[∃c[P_y^c(k)=b]])∨\\((∀y,y≥dim(k)[∃c[p_y^c(k)=b]])∧(∃c[(c>dim(k))∧\\(p_c(b)≠b-1)∧(a_{b,c}>0)]))\}&\text{otherwise}\end{cases}\)
- \({\Delta}=D_0D_1...D_{k-1-r}\)
- \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
- \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,y}-a_{r,y}-1&\text{if} y=dim(k)\\0&\text{otherwise}\end{cases}\)
- \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1...S_{r-1}\)
- \(B_0=S_rS_{r+1}...S_{k-1}\)
- \(B_b=B_0+b×{\Delta}\)
- \(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)
評価[]
- (0,0)(1,1)\(={\psi_0({\Omega^{\omega}})}\)
- (0,0)(1,1)(1,1)=|(0,0)(1,1)|(1,0)(2,1)|(2,0)(3,1)|...\(={\psi_0({\Omega^{\omega}+1})}\)
- (0,0)(1,1)(2,0)=(0,0)|(1,1)|(1,1)|(1,1)|...\(={\psi_0({\Omega^{\omega}+{\omega}})}\)
- (0,0)(1,1)(2,0)(2,0)=|(0,0)(1,1)(2,0)|(1,0)(2,1)(3,0)|(2,0)(3,1)(4,0)|...\(={\psi_0({\Omega^{\omega}+{\omega+1}})}\)
- (0,0)(1,1)(2,0)(3,1)=(0,0)(1,1)|(2,0)|(3,0)|(4,0)|...\(={\psi_0({\Omega^{\omega}×2})}\)
- (0,0)(1,1)(2,1)\(={\psi_0({\Omega^{\omega}×{\omega}})}\)
- (0,0)(1,1)(2,1)(2,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega}})}\)
- (0,0)(1,1)(2,1)(3,0)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega×{\omega}}})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega×{\omega^{\omega}}}})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(3,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^2}})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(2,1)(3,0)(4,0)(3,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^2×2}})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(3,1)\(={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^3}})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(4,0)\(={\psi_0({\Omega^{\omega}×({\omega+1})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(4,0)(3,1)\(={\psi_0({\Omega^{\omega+1}})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(3,1)(4,0)(5,0)(4,1)\(={\psi_0({\Omega^{\Omega}})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(4,0)\(={\psi_0({\psi_1(0)})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(5,0)\(={\psi_0({\psi_1({\omega})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(4,1)\(={\psi_0({\psi_1({\Omega})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(4,1)(5,0)(6,0)(6,0)\(={\psi_0({\psi_1({\psi_1(0)})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(5,0)\(={\psi_0({\psi_1({\Omega_2})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}+1})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}+{\Omega}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,0)(4,1)(5,0)(6,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}+{\psi_1({\Omega_2^{\omega}})}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,0)(5,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}+{\Omega_2}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+1})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(5,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(5,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\Omega}}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\Omega×{\omega}}}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,0)(7,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\psi_1(0)}}})})}\)
- (0,0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2×{\psi_1({\Omega_2^{\omega}×{\omega}})}}})})}\)
- (0,0)(1,1)(2,1)(3,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})})}\)
- (0,0)(1,1)(2,1)(3,1)(2,1)(3,1)=|(0,0)(1,1)(2,1)(3,1)(2,1)|(3,0)(4,1)(5,1)(6,1)(5,1)|(6,0)(7,1)(8,1)(9,1)(8,1)|...
- (0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})×2})}\)
- (0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2+1}})})}\)
- (0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(4,1)(5,0)(6,1)(7,1)(8,1)
- \(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}+{\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})}})})}\)
- (0,0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2+{\Omega_2}}})})}\)
- (0,0)(1,1)(2,1)(3,1)(2,1)(3,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×2}})})}\)
- (0,0)(1,1)(2,1)(3,1)(3,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×{\omega}}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×{\Omega^{\omega}}}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2×{\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})}}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^3}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)(2,1)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^3×2}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega}×{\omega}+{\Omega_2^4}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)(4,0)\(={\psi_0({\psi_1({\Omega_2^{\omega}×({\omega+1})})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)(4,0)(3,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\omega+1}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)(4,1)\(={\psi_0({\psi_1({\Omega_2^{\Omega}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)(5,0)(6,0)(6,0)\(={\psi_0({\psi_1({\Omega_2^{\psi_1(0)}})})}\)
- (0,0)(1,1)(2,1)(3,1)(4,1)(5,1)\(={\psi_0({\psi_1({\Omega_2^{\Omega_2}})})}\)
- (0,0)(1,1)(2,2)\(={\psi_0({\psi_1({\psi_2(0)})})}\)
- (0,0)(1,1)(2,2)(2,2)\(=|(0,0)(1,1)(2,2)|(2,1)(3,2)(4,3)|(4,2)(5,3)(6,4)|...\)
- (0,0)(1,1)(2,2)(2,1)(3,1)\(={\psi_0({\psi_1({\psi_2(0)}+{\Omega_2^2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)\(={\psi_0({\psi_1({\psi_2(0)×2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)\(={\psi_0({\psi_1({\psi_2(0)^2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(3,2)\(={\psi_0({\psi_1({\psi_2(1)})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,0)\(={\psi_0({\psi_1({\psi_2({\omega})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(4,0)\(={\psi_0({\psi_1({\psi_2({\omega+1})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,0)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,0)(4,1)(5,2)\(={\psi_0({\psi_1({\psi_2({\psi_1({\psi_2(0)})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,0)(5,0)\(={\psi_0({\psi_1({\psi_2({\Omega_2})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,1)\(={\psi_0({\psi_1({\psi_2({\Omega_2^{\omega}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,0)(5,1)(6,1)\(={\psi_0({\psi_1({\psi_2({\Omega_2^{\omega}×{\omega}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_2^{\omega}×{\omega}+{\Omega_2^2}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,1)(5,2)\(={\psi_0({\psi_1({\psi_2({\psi_2(0)})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})})}+{\Omega})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})})}×2)}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)(4,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+1)})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+{\Omega})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,0)(4,1)(5,2)(5,1)(6,2)(7,2)(5,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+{\Omega_2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}+{\Omega_2^2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(2,1)(3,2)(4,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})×2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}×{\Omega})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)(4,0)(5,1)(6,2)(6,1)(7,2)(8,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}×{\psi_1({\psi_2({\Omega_3})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3})}×{\Omega_2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3})^2})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3+1})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3+{\Omega}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,1)(5,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3+{\Omega_2}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(4,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3×2})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\omega}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\Omega}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)(6,0)(7,1)(8,2)(8,1)(9,2)(10,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\psi_1({\psi_2({\Omega_3})})}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)(6,1)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\Omega_2}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,1)(6,2)(6,1)(7,2)(8,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3×{\psi_2({\Omega_3})}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(5,2)\(={\psi_0({\psi_1({\psi_2({\Omega_3^2})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,0)(6,0)\(={\psi_0({\psi_1({\psi_2({\psi_3(0)})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,1)(7,0)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4}})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,1)(7,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega}}})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,0)(6,1)(7,2)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}+{\Omega_4×{\psi_1({\psi_2(0)})}}})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(4,2)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}+{\Omega_3})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(4,2)(5,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})×2})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,0)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}×{\Omega^{\omega}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,1)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})×{\Omega_2}})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,2)\(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}×{\psi_2(0)})})})}\)
- (0,0)(1,1)(2,2)(2,1)(3,2)(4,2)(5,1)(6,2)(7,2)(8,0)(9,1)
- \(={\psi_0({\psi_1({\psi_2({\psi_3({\Omega_4^{\omega}×{\omega}+{\Omega_4×{\Omega_2}}})}×{\psi_2({\psi_3({\Omega_4^{\omega}})})})})})}\)
- (0,0)(1,1)(2,2)(2,2)\(={\psi_0({\Omega_{\omega}})}=B(0,0,0)(1,1,1)\)
- (0,0)(1,1)(2,2)(3,0)\(={\psi_0({\Omega_{\omega}×{\omega}})}\)
- (0,0)(1,1)(2,2)(3,2)\(={\psi_0({\Omega_{\omega}×{\omega+1}})}\)
- (0,0)(1,1)(2,2)(3,2)(4,0)\(={\psi_0({\Omega_{\omega}×{\omega×2}})}\)
- (0,0)(1,1)(2,2)(3,2)(4,0)(3,2)\(={\psi_0({\Omega_{\omega}×({\omega×2+1})})}\)
- (0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(5,0)=(0,0)(1,1)(2,2)|(3,2)(4,0)(5,0)|(4,2)(5,0)(6,0)|(6,2)(7,0)(8,0)|...
- (0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,1)\(={\psi_0({\Omega_{\omega}×{\Omega}})}\)
- (0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,1)(3,2)=|(0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,1)|(3,1)(4,2)(5,3)(6,3)(7,0)(8,0)(7,2)|...
- \(={\psi_0({\Omega_{\omega}^2})}=\)B(0,0,0)(1,1,1)(2,1,0)(1,1,1)
- (0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(4,2)=B(0,0,0)(1,1,1)(2,1,1)
- (0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(5,0)=B(0,0,0)(1,1,1)(2,2,0)
- (0,0)(1,1)(2,2)(3,2)(4,0)(5,1)=B(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,0,0)
m-有限行列システム(m-FMs)[]
表記[]
- \(k,m,n:\)自然数
- \(a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1},...a_{x,m})\)
- 正規形\(:S_0,S_1,...S_k[n]\)
定義[]
- \(Z:\)零ベクトル
- \(b,c,e,x,y:\)非負整数
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:
- \(dim(x)=Max\{b|a_{x,b}>0\}\)
- \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
- \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
- \(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
- \(r=Max\{b|∀y,y≥dim(k)[∃c[P_y^c(k)=b]]\}\)
- \({\Delta}=D_0D_1...D_{k-1-r}\)
- \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
- \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,dim(k)}-a_{r,dim(k)}-1&\text{if} y≥dim(k)\\0&\text{otherwise}\end{cases}\)
- \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1...S_{r-1}\)
- \(B_0=S_rS_{r+1}...S_{k-1}\)
- \(B_b=B_0+b×{\Delta}\)
- \(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)
評価[]
- m=1
- (0,0)(1,0)(2,0)(3,0)=|(0,0)(1,0)(2,0)|(2,2)(3,0)(4,0)|(4,4)(5,0)(6,0)|...
- (0,0)(1,0)(2,0)(2,2)(3,0)(4,0)=(0,0)(1,0)(2,0)|(2,2)(3,0)|(3,3)(4,0)|(4,4)(5,0)|...
- (0,0)(1,0)(2,0)(2,2)(3,0)(3,2)=|(0,0)(1,0)(2,0)(2,2)(3,0)|(3,1)(4,0)(5,0)(5,3)(6,0)|(6,2)(7,0)(8,0)(8,4)(9,0)|...
- (0,0)(1,0)(2,0)(2,2)=|(0,0)(1,0)(2,0)|(2,1)(3,0)(4,0)|(4,2)(5,0)(6,0)|...
- (0,0)(1,0)(2,0)(2,1)(3,0)(4,0)=(0,0)(1,0)(2,0)|(2,1)(3,0)|(3,2)(4,0)|(4,3)(5,0)|...
- (0,0)(1,0)(2,0)=|(0,0)(1,0)|(1,1)(2,0)|(2,2)(3,0)|...=B(0,0,0)(1,1,1)
- (0,0)(1,0)(2,0)(2,0)(3,0)=B(0,0,0)(1,1,1)(2,0,0)
- (0,0)(1,0)(2,0)(2,1)=B(0,0,0)(1,1,1)(2,1,0)
- (0,0)(1,0)(2,0)(2,1)(2,1)=B(0,0,0)(1,1,1)(2,1,0)(1,1,1)(2,1,0)
- (0,0)(1,0)(2,0)(2,1)(3,0)=B(0,0,0)(1,1,1)(2,1,0)(2,0,0)
- (0,0)(1,0)(2,0)(2,1)(3,0)(3,1)=B(0,0,0)(1,1,1)(2,1,0)(2,1,0)
- (0,0)(1,0)(2,0)(2,1)(3,0)(3,1)(4,0)=B(0,0,0)(1,1,1)(2,1,0)(3,0,0)
- (0,0)(1,0)(2,0)(2,1)(3,0)(3,2)=B(0,0,0)(1,1,1)(2,1,0)(3,2,0)
- (0,0)(1,0)(2,0)(2,1)(3,0)(4,0)=B(0,0,0)(1,1,1)(2,1,0)(3,2,1)
- (0,0)(1,0)(2,0)(2,2)=B(0,0,0)(1,1,1)(2,1,1)
- (0,0)(1,0)(2,0)(2,2)(2,0)=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)
- (0,0)(1,0)(2,0)(2,2)(2,1)=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,0)
- (0,0)(1,0)(2,0)(2,2)(2,2)=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)(2,1,1)
- (0,0)(1,0)(2,0)(2,2)(3,0)=B(0,0,0)(1,1,1)(2,1,1)(2,0,0)
- (0,0)(1,0)(2,0)(2,2)(3,0)(3,1)=B(0,0,0)(1,1,1)(2,1,1)(2,1,0)
- (0,0)(1,0)(2,0)(2,2)(3,0)(3,2)=B(0,0,0)(1,1,1)(2,1,1)(2,1,1)
- (0,0)(1,0)(2,0)(2,2)(3,0)(3,3)=B(0,0,0)(1,1,1)(2,2,0)
- (0,0)(1,0)(2,0)(2,2)(3,0)(4,0)=B(0,0,0)(1,1,1)(2,2,0)(3,3,1)
- (0,0)(1,0)(2,0)(3,0)=B(0,0,0)(1,1,1)(2,2,1)
- (0,0)(1,0)(2,0)(3,0)(2,2)(3,0)(4,0)(5,0)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,0)(3,3,1)
- (0,0)(1,0)(2,0)(3,0)(3,0)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,1)
- (0,0)(1,0)(2,0)(3,0)(3,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)
- (0,0)(1,0)(2,0)(3,0)(3,1)(3,0)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(1,1,1)(2,2,1)
- (0,0)(1,0)(2,0)(3,0)(3,1)(4,0)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(2,0,0)
- (0,0)(1,0)(2,0)(3,0)(3,1)(4,0)(4,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(2,1,0)
- (0,0)(1,0)(2,0)(3,0)(3,1)(4,0)(5,0)(6,0)=B(0,0,0)(1,1,1)(2,2,1)(2,1,0)(3,2,1)(4,3,1)
- (0,0)(1,0)(2,0)(3,0)(3,2)=B(0,0,0)(1,1,1)(2,2,1)(2,1,1)
大偽大偽行列システム(LPLPMs)[]
表記[]
- \(k,m,n:\)自然数
- \(a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1},...a_{x,m})\)
- 正規形\(:S_0,S_1,...S_k[n]\)
定義[]
- \(Z:\)零ベクトル
- \(b,c,e,x,y:\)非負整数
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:
- \(dim(x)=Max\{b|a_{x,b}>0\}\)
- \(h=Max\{dim(b)\}\)
- \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
- \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})∧(∃c[p_y^c(x)=b])\}\)
- \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
- \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
- \(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
- \(r=\begin{cases}Max\{b|∀y,y≥dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\Max\{b|∀y,y≥dim(k)[∃c[P_y^c(k)=b]])\}&\text{otherwise}\end{cases}\)
- \({\Delta}=D_0D_1...D_{k-1-r}\)
- \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
- \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,y}-a_{r,y}-1&\text{if} dim(k)≤y≤h\\0&\text{otherwise}\end{cases}\)
- \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1...S_{r-1}\)
- \(B_0=S_rS_{r+1}...S_{k-1}\)
- \(B_b=B_0+b×{\Delta}\)
- \(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)
巨大不明行列システム(HUMs)[]
表記[]
- \(k,m,n:\)自然数
- \(a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1},...)\)
- 正規形\(:S_0,S_1,...S_k[n]\)
定義[]
- \(Z:\)零ベクトル
- \(b,c,e,x,y:\)非負整数
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:
- \(dim(x)=Max\{b|a_{x,b}>0\}\)
- \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
- \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})∧(∃c[p_y^c(x)=b])\}\)
- \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b)∨(a_{b,0}=0))\}\)
- \(P_{y+1}(x)=Max\{b|(a_{b,y+1}<a_{x,y+1})∧\)
- \(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
- \(r=\begin{cases}Max\{b|∀y,y≥dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\Max\{b|∀y,y≥dim(k)[∃c[P_y^c(k)=b]]\}&\text{otherwise}\end{cases}\)
- \({\Delta}=D_0D_1...D_{k-1-r}\)
- \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
- \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,y}-a_{r,y}-1&\text{if} y=dim(k)\\a_{k,y-1}-a_{r,y-1}-1&\text{if} y=dim(k)+1\\0&\text{otherwise}\end{cases}\)
- \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1...S_{r-1}\)
- \(B_0=S_rS_{r+1}...S_{k-1}\)
- \(B_b=B_0+b×{\Delta}\)
- \(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)
評価[]
- (0)(1)(2)(2)=|(0,0)(1,0)(2,0)|(1,1)(2,0)(3,0)|(2,2)(3,0)(4,0)|...=B(0,0,0)(1,1,1)
- (0)(1)(2)(3)(3)=(0,0)(1,0)(2,0)(3,0)|(2,2)(3,0)(4,0)(5,0)|(4,4)(5,0)(6,0)(7,0)|...
- (0,0)(1,0)(2,0)(3,0)(2,2)=(0,0,0)(1,0,0)(2,0,0)(3,0,0)|(2,1,1)(3,0,0)(4,0,0)(5,0,0)|(4,2,2)(5,0,0)(6,0,0)(7,0,0)|...
- (0)(1)(2)(3)(4)(4)=|(0,0)(1,0)(2,0)(3,0)(4,0)|(3,3)(4,0)(5,0)(6,0)(7,0)|(6,6)(7,0)(8,0)(9,0)(10,0)|...
- (0,0)(1,0)(2,0)(3,0)(4,0)(3,3)=|(0,0,0)(1,0,0)(2,0,0)(3,0,0)(4,0,0)|(3,2,2)(4,0,0)(5,0,0)(6,0,0)(7,0,0)|...
- (0,0,0)(1,0,0)(2,0,0)(3,0,0)(4,0,0)(3,2,2)=|(0,0,0,0)(1,0,0,0)(2,0,0,0)(3,0,0,0)(4,0,0,0)|(3,2,1,1)(4,0,0,0)(5,0,0,0)(6,0,0,0)(7,0,0,0)|...
- (0,0)(1,1)=B(0(0)0)(1(0)1)
- (0,0)(1,1)(1,1)=B(0,0(0)0)(1,1(0)1)(1,1(0)0)
- (0,0)(1,1)(2,0)=(0,0)|(1,1)|(1,1)|(1,1)|...=B(0,0(0)0)(1,1(0)1)(1,1(0)0)(2,0(0)0)
- (0,0)(1,1)(2,0)(2,0)=|(0,0)(1,1)(2,0)|(1,1)(2,2)(3,0)|(2,2)(3,3)(4,0)|...
- (0,0)(1,1)(2,0)(1,1)(2,2)=(0,0)(1,1)(2,0)|(1,1)|(2,1)|(3,1)|...
- (0,0)(1,1)(2,0)(1,1)(2,1)=|(0,0)(1,1)(2,0)(1,1)|(2,0)(3,1)(4,0)(3,1)|(4,0)(5,1)(6,0)(5,1)|...
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(2,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)(2,1,0(0)0)
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(2,2)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)(2,2,0(0)0)
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(3,0)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(3,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(4,0)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(2,0,0(0)0)
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(4,0)(3,1)(4,0)(5,0)(4,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(2,1,0(0)0)
- (0,0)(1,1)(2,0)(1,1)(2,0)(3,1)(4,0)(3,1)(4,0)(5,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0))(3,2,1(0)1)
- (0,0)(1,1)(2,0)(1,1)(2,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(3,2,1(0)1)(3,2,1(0)0)(4,2,0(0)0)
超限行列システム(TMs)[]
表記[]
- \(k,m,n:\)自然数
- \(a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1},...)\)
- 正規形\(:S_0,S_1,...S_k[n]\)
定義[]
- \(Z:\)零ベクトル
- \(b,c,e,x,y:\)非負整数
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:
- \(dim(x)=Max\{b|a_{x,b}>0\}\)
- \(p_0(x)=Max\{b|(b<x)∧(a_{b,0}+1=a_{x,0})\}\)
- \(p_{y+1}(x)=Max\{b|(b<x)∧(a_{b,y+1}+1=a_{x,y+1})∧(∃c[p_y^c(x)=b])\}\)
- \(P_0(x)=Max\{b|(b<x)∧(a_{b,0}<a_{x,0})∧((P_0(b)≠b-1)∨(a_{b,0}=0))\}\)
- \(P_{y+1}(x)=Max\{b|(b<x)∧(a_{b,y+1}<a_{x,y+1})∧\)
- \(((P_{y+1}(b)≠b-1)∨(a_{b,y+1}=0))∧(∃c[P_y^c(x)=b])\}\)
- \(r=\begin{cases}Max\{b|∀y,y≤dim(k)[∃c[p_y^c(k)=b]]\}&\text{if} a_{k-1,0}+1=a_{k,0}\\Max\{b|∀y,y≤dim(k)[∃c[P_y^c(k)=b]]\}&\text{otherwise}\end{cases}\)
- \({\Delta}=D_0D_1...D_{k-1-r}\)
- \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
- \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,dim(k)}-a_{r,dim(k)}-1&\text{if} dim(k)≤y≤dim(k)+n\\0&\text{otherwise}\end{cases}\)
- \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[P_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1...S_{r-1}\)
- \(B_0=S_rS_{r+1}...S_{k-1}\)
- \(B_b=B_0+b×{\Delta}\)
- \(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)
評価[]
- (0)(1)(2)(2)=|(0)(1)(2)|(1,1,1...1)(2)(3)|(2,2,2...2)(3)(4)|...=B(0(0)0)(1(0)1)
- (0)(1)(2)(2)(2)=|(0)(1)(2)(2)|(1,1,1...1)(2)(3)(3)|(2,2,2...2)(3)(4)(4)|...=B(0(0)0)(1(0)1)(1(0)1)
- (0)(1)(2)(3)=B(0(0)0)(1(0)1)(2(0)0)
- (0)(1)(2)(3)(2,1)=B(0,0(0)0)(1,1(0)1)(2,1(0)0)
- (0)(1)(2)(3)(2,1)(2)=|(0)(1)(2)(3)(2,1)|(1,1,1...1)(2)(3)(4)(3,2)|(2,2,2...2)(3)(4)(5)(4,3)|...
- (0)(1)(2)(3)(2,1)(1,1)(2)(3)(4)(3,2)=(0)(1)(2)(3)(2,1)|(1,1)(2)(3)(4)|(3,1)(4)(5)(6)|(4,1)(5)(6)(7)|...
- (0)(1)(2)(3)(2,1)(1,1)(2)(3)(4)(3,1)(3)=(0)(1)(2)(3)(2,1)|(1,1)(2)(3)(4)(3,1)|(2,2,1...1)(3)(4)(5)(4,1)|(3,3,2...2)(4)(5)(6)(5,1)|...=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(1,1,0(0)0)(2,2,1(0)1)(3,1,0(0)0)(2,2,1(0)1)
- (0)(1)(2)(3)(2,1)(1,1)(2)(3)(4)(3,2)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(1,1,0(0)0)(2,2,1(0)0)(3,2,0(0)0)
- (0)(1)(2)(3)(2,1)(1,1,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(1,1,1(0)0)
- (0)(1)(2)(3)(2,1)(2)=B(0,0(0)0)(1,1(0)1)(2,1(0)0)(1,1(0)1)
- (0)(1)(2)(3)(2,1)(2,1)=B(0,0(0)0)(1,1(0)0)(2,1(0)0)(1,1(0)1)(2,1(0)0)
- (0)(1)(2)(3)(2,1)(3)=B(0,0(0)0)(1,1(0)0)(2,1(0)0)(2,0(0)0)
- (0)(1)(2)(3)(2,1)(3,1)=B(0,0(0)0)(1,1(0)0)(2,1(0)0)(2,1(0)0)
- (0)(1)(2)(3)(2,2)=|(0)(1)(2)(3)|(2,1,1...1)(3)(4)(5)|(4,2,2...2)(5)(6)(7)|...=B(0,0(0)0)(1,1(0)0)(2,1(0)1)
- (0)(1)(2)(3)(2,2,2)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,1(0)1)
- (0)(1)(2)(3)(3)=B(0(0)0)(1(0)1)(2(0)1)
- (0)(1,1)=B(0(0)0)(1(0)1)(2(0)2)
- (0)(1,1)(1,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)0)
- (0)(1,1)(2)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)0)(2,0(0)0)
- (0)(1,1)(2)(2)=|(0)(1,1)(2)|(1,1,1...1)(2,2)(3)|(2,2,2...2)(3,3)(4)|...
- (0)(1,1)(2)(1,1,1)=|(0)(1,1)(2)|(1,1)(2,2)(3)|(2,2)(3,3)(4)|...
- (0)(1,1)(2)(1,1)(2,2)=(0)(1,1)(2)|(1,1)|(2,1)|(3,1)|...
- (0)(1,1)(2)(1,1)(2,1)=|(0)(1,1)(2)(1,1)|(2)(3,1)(4)(3,1)|(4)(5,1)(6)(5,1)|...
- (0)(1,1)(2)(1,1)(2)(3)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)0)(2,0(0)0)(3,0(0)0)
- (0)(1,1)(2)(1,1)(2)(3)(3)=(0)(1,1)(2)|(1,1)(2)(3)|(2,2,1...1)(3)(4)|(3,3,2...2)(4)(5)|...=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)2)(1,1,0(0)0)(2,2,1(0)1)
- (0)(1,1)(2)(1,1)(2)(3,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)2)(1,1,0(0)0)(2,2,1(0)1)(3,3,2(0)2)
- (0)(1,1)(2)(1,1)(2)(3,1)(3)=(0)(1,1)(2)|(1,1)(2)(3,1)|(2,2,1...1)(3)(4,2,1...1)|(3,3,2...2)(4)(5,3,2...2)|...=B(0(0)0)(1(0)1)(2(0)2)(1(0)1)
- (0)(1,1)(2)(1,1)(2)(3,1)(3,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)1)(2,1(0)0)
- (0)(1,1)(2)(1,1)(2)(3,1)(4)=B(0,0(0)0)(1,1(0)1)(2,2(0)2)(1,1(0)1)(2,1(0)0)(3,0(0)0)
- (0)(1,1)(2)(1,1)(2)(3,1)(4)(3,1)(4)(5,1)=B(0,0,0(0)0)(2,2,2(0)2)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)1)(4,3,2(0)2)
- (0)(1,1)(2)(1,1)(2,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)2)(1,1,1(0)1)(2,1,1(0)0)
第2大偽原始数列(SLPpSs)[]
\(LSZNOS+NB\)
表記[]
\((a_0,a_1,a_2...a_k)[n]\)
サブルール[]
- 大小関係
- \(A<B⇔∃C[((A<C)∨(A=C))∧(∃c[(\text{ex}(B,c)=C)])]\)
※\(A、B、C\)は列
- 展開
列\(S=(s_0,s_1,s_2...s_m)\)と自然数\(b\)に対して\(\text{ex}(S,b)\)を以下の通り定義する。
- \(r=Max\{c|(s_{c-1}≥s_c)∧(s_c<s_m)\}\)
- \(q(0)=\begin{cases}Max\{c|s_{c-1}=s_r-1\}&\text{if} ∃c\\0&\text{otherwise}\end{cases}\)
- \(q(c+1)=min\{d|(s_d=s_r)∧(q(c)<d)\}\)
- \(l=Max\{c|q(c)=r\}\)
- \(S_c=(s_{q(c)},s_{q(c)+1},s_{q(c)+2}...s_{q(c+1)-1})\)
- \(S_l=(s_{q(l)},s_{q(l)+1},s_{q(l)+2}...s_m)\)
- \(i=\begin{cases}Max\{q(c)|S_c<S_l\}&\text{if} ∃q(c)\\q(0)&\text{otherwise}\end{cases}\)
- \(A=(s_0,s_1,s_2...s_{i-1})\)
- \({\Delta}=s_m-s_i-1\)
- \(B_c=(s_i,s_{i+1},s_{i+2}...s_{m-1})+{\Delta}×c\)
- \(\text{ex}(S,b)=A\frown B_0\frown B_1\frown B_2...B_b\)
計算法[]
- rule1:\((0)[n]=n+1\)
- rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
- rule3:\(\text{ex}((a_0,a_1,a_2...a_k),n)[n]\)
評価[]
- (0,1,2)=\({\beta_0}({\beta_0}({\Omega}))\)
- (0,1,2,0,1,1,2,3)=\({\beta_0}({\beta_0}({\Omega}),0,{\beta_0}({\Omega}))\)
- (0,1,2,0,1,1,2,3,0,1,2)=(|0,1,2,0,1,1,2,3|1,2,3,1,2,2,3,4|2,3,4,2,3,3,4,5|...)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
- (0,1,2,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
- (0,1,2,0,1,1,2,3,1,0,1,1,2,3,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,0,{\beta_0}({\Omega})))\)
- (0,1,2,0,1,1,2,3,1,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,1))\)
- (0,1,2,0,1,1,2,3,1,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},1,{\beta_0}({\Omega}))))\)
- (0,1,2,0,1,1,2,3,1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),2))\)
- (0,1,2,0,1,1,2,3,1,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\omega}))\)
- (0,1,2,0,1,1,2,3,1,1,2,3)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\beta_0}({\Omega}))))\)
- (0,1,2,0,1,1,2,3,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\beta_0}({\Omega}),0)))\)
- (0,1,2,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
- (0,1,2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0)))\)
- (0,1,2,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
- (0,1,2,2,0,1,2,2)=(|0,1,2,2,0,1,2|1,2,3,3,1,2,3|2,3,4,4,2,3,4|...)
- (0,1,2,2,0,1,2)=(|0,1,2,2,0,1|1,2,3,3,1,2|2,3,4,4,2,3|...)
- (0,1,2,2,0,1,1,2,3,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega})))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega}),1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,0,1,2,2)=(0,1,2,2,0,1,1,2,3,0,1,2|0,1,2|1,2,3|2,3,4|...)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))))))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,1,2,3,0,1,2,1)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),1,1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,1,2,3,1)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),1,2))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))),{\beta_0}({\Omega})))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,0,1,2,1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))),0)))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,0,1,2,1,2,3,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,2))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega})))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,0,1,2,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))))))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,0,{\beta_0}({\Omega})))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,1)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,1))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,1,2,3,1)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,1,2))\)
- (0,1,2,2,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,1,1,0,1,1,2,3,0,1,2,1,2,3,3,1,0,1,2,1,2,3,3,0,1,2,2)
- =\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega})),2,1,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
第3大偽原始数列(TLPpSs)[]
\(LSZNOS+NB\)
表記[]
\((a_0,a_1,a_2...a_k)[n]\)
サブルール[]
- 大小関係
- \(A<B⇔∃C[((A<C)∨(A=C))∧(∃c[(\text{ex}(B,c)=C)])]\)
※\(A、B、C\)は列
- 展開
列\(S=(s_0,s_1,s_2...s_m)\)と自然数\(b\)に対して\(\text{ex}(S,b)\)を以下の通り定義する。
- \(p(c,d)=\begin{cases}Max\{e|(s_e=d)∧(e≤c)\}&\text{if} ∃e\\0&\text{otherwise}\end{cases}\)
- \(q(c,0)=\begin{cases}Max\{e|s_{e-1}=c-1\}&\text{if} ∃e\\0&\text{otherwise}\end{cases}\)
- \(q(c,d+1)=min\{e|(q(c,d)<e)∧(s_e=c)\}\)
- \(S_{c,d}=(s_{q(c,d)},s_{q(c,d)+1},s_{q(c,d)+2}...s_{q(c,d+1)-1})\)
- \(l_c=Max\{d|q(c,d)=p(m,c)\}\)
- \(S_{c,l_c}=(s_{p(m,c)},s_{p(m,c)+1},s_{p(m,c)+2}...s_m)\)
- \(i=\begin{cases}Max\{q(c,d)|S_{c,d}<S_{c,l_c}\}&\text{if} ∃q(c,d)\\0&\text{otherwise}\end{cases}\)
- \(A=(s_0,s_1,s_2...s_{i-1})\)
- \({\Delta}=s_m-s_i-1\)
- \(B_c=(s_i,s_{i+1},s_{i+2}...s_{m-1})+{\Delta}×c\)
- \(\text{ex}(S,b)=A\frown B_0\frown B_1\frown B_2...B_b\)
計算法[]
- rule1:\((0)[n]=n+1\)
- rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
- rule3:\(\text{ex}((a_0,a_1,a_2...a_k),n)[n]\)
\(m\)-階差数列システム[]
表記[]
\((a_0,a_1...a_k)_m[n]\)
計算法[]
- rule1:\((a_0,a_1...a_{k-1},0)_m[n]=(a_0,a_1...a_{k-1})_m[n+1]\)
- rule2:
- \(D=max\{a_k-a_{k-1},-m\}\)
- \(i=Max\{j|(a_j-a_{j-1}<D)∧(a_j<a_k)\}\)
- \({\Delta}=a_k-a_i-1\)
- \(A=(a_0,a_1,...a_{i-1})_m\)
- \(B_p=(a_i+{\Delta}×p,a_{i+1}+{\Delta}×p,...a_{k-1}+{\Delta}×p)_m\)
- \((a_0,a_1...a_k)_m[n]=\{A\frown B_0\frown B_1\frown...B_n\}[n+1]\)
評価[]
- \(m=-2→\)原始数列
- (0,1,2,...)=(0,1,3)=\({\varepsilon_0}\)
- (0,1,3,0,1,3)=\({\varepsilon_0}×2\)
- (0,1,3,1)=\({\varepsilon_0}×{\omega}\)
- (0,1,3,1,3)=\({\varepsilon_0}^2\)
- (0,1,3,2)=\({\varepsilon_0^{\omega}}\)
- (0,1,3,2,4)=\({\varepsilon_0^{\varepsilon_0}}\)
- (0,1,3,3)=\({\varepsilon_1}\)
- (0,1,3,4)=\({\psi_0({\omega})}\)
- (0,1,3,4,6)=\({\psi_0({\psi_0(0)})}\)
- (0,1,3,5)=(0|1,3|4,6|7,9|...)=\({\psi_0({\Omega})}\)
- (0,1,3,5,3)=\({\psi_0({\Omega}+1)}\)
- (0,1,3,5,3,5)=\({\psi_0({\Omega+{\psi_0(0)}})}\)
- (0,1,3,5,4)=\({\psi_0({\Omega+{\psi_0(0)×{\omega}}})}\)
- (0,1,3,5,5)=\({\psi_0({\Omega+{\psi_0(1)}})}\)
- (0,1,3,5,6)=\({\psi_0({\Omega+{\psi_0({\omega})}})}\)
- (0,1,3,5,6,8,10)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
- (0,1,3,5,7)=\({\psi_0({\Omega×2})}\)
- (0,1,3,6)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,3,6,8,11)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
- (0,1,3,6,9)=\({\psi_0({\Omega^2})}\)
- (0,1,3,6,10)=\({\psi_0({\Omega^2×{\omega}})}\)
- (0,1,3,6,10...)=\({\psi_0({\Omega^{\omega}})}\)
- \(m=-1→\)大偽原始数列
- \(m=0\)
- (0,1,2)=(|0,1|1,2|2,3|...)
- (0,1,1,2,2)=(|0,1,1,2|1,2,2,3|2,3,3,4|...)=\({\varepsilon_0}\)
- (0,1,1,2,2,3)=\({\psi_0({\omega})}\)
- (0,1,1,2,2,3,2,3,3,4,4)=\({\psi_0({\varepsilon_0})}\)
- (0,1,1,2,2,3,3)=\({\psi_0({\Omega})}\)
- (0,1,2)=\({\psi_0({\Omega^{\omega}})}\)
- (0,1,2,2)=\({\psi_0({\Omega^{\omega}}+1)}\)
- (0,1,2,2,3,3)=\({\psi_0({\Omega^{\omega}+{\Omega}})}\)
- (0,1,2,2,3,4)=\({\psi_0({\Omega^{\omega}×2})}\)
- (0,1,2,3)=\({\psi_0({\Omega^{\omega}×{\omega}})}\)
- (0,1,2,3,3,4,5,6)=\({\psi_0({\Omega^{\omega}×{\omega×2}})}\)
- (0,1,2,3,4)=\({\psi_0({\Omega^{\omega}×{\omega^2}})}\)
- (0,1,3)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega}}})}\)
- (0,1,3,3,4,6)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega}×2}})}\)
- (0,1,3,4)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega+1}}})}\)
- (0,1,3,4,6)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega×2}}})}\)
- (0,1,3,5)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega^2}}})}\)
- (0,1,3,6)=\({\psi_0({\Omega^{\omega}×{\omega^{\omega^{\omega}}}})}\)
- (0,1,3,6,10...)=\({\psi_0({\Omega^{\omega}×{\varepsilon_0}})}\)
\(L-\)階差数列システム[]
\(m\)-ヒドラ数列システム[]
表記[]
\((a_0,a_1...a_k)_m[n]\)
計算法[]
- rule1:\((a_0,a_1...a_{k-1},0)_m[n]=(a_0,a_1...a_{k-1})_m[n+1]\)
- rule2:
- \(p(b)=Max\{c|a_c<a_b+m+1\}\)
- \(i=\begin{cases}Max\{b|(a_b<a_k)∧(∃c[p^c(k)=b])\}&\text{if} a_k+m-a_{p(k)}=0\\Max\{b|(a_b<a_k)∧(∃c[p^c(k)=b])∧(a_b-a_{p(b)}<a_k-a_{p(k)})\}&\text{otherwise}\end{cases}\)
- \({\Delta}=a_k-a_i-1\)
- \(A=(a_0,a_1...a_{i-1})_m\)
- \(B_b=(a_i+{\Delta}×b,a_{i+1}+{\Delta}×b,...a_{k-1}+{\Delta}×b)_m\)
- \((a_0,a_1...a_k)_m[n]=A\frown B_0\frown B_1\frown...B_n[n]\)
評価[]
- m=-1→原始数列
- (0,1,3)=(0|1|2|3|...)=\({\varepsilon_0}\)
- (0,1,3,1,3)=(0,1,3|1|2|3|...)=\({\varepsilon_0^2}\)
- (0,1,3,2)=(0|1,3|1,3|1,3|...)=\({\varepsilon_0^{\omega}}\)
- (0,1,3,3)=(0|1,3|2,4|3,5|...)=\({\varepsilon_1}\)
- (0,1,3,4)=(0,1|3|3|3|...)=\({\psi_0({\omega})}\)
- (0,1,3,4,6)=(0,1,3|4|5|6|...)=\({\psi_0({\psi_0(0)})}\)
- (0,1,3,5)=(0|1,3|4,6|7,9|...)=\({\psi_0({\Omega})}\)
- (0,1,3,5,3)=(0|1,3,5|2,4,6|3,5,7|...)=\({\psi_0({\Omega+1})}\)
- (0,1,3,5,3,4,6,8)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
- (0,1,3,5,3,5)=(0|1,3,5,3|4,6,8,6|7,9,11,9|...)=\({\psi_0({\Omega×2})}\)
- (0,1,3,5,4)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,3,5,5)=\({\psi_0({\Omega^2})}\)
- (0,1,3,5,6)=\({\psi_0({\Omega^{\omega}})}\)
- (0,1,3,5,7)=\({\psi_0({\Omega^{\Omega}})}\)
- (0,1,3,5,7,9)=\({\psi_0({\Omega^{\Omega^{\Omega}}})}\)
- (0,1,3,6)=\({\psi_0({\psi_1(0)})}\)
- (0,1,3,6,10...)=\({\psi_0({\Omega_{\omega}})}\)
- m=0
- (0,1,2)=(|0,1|1,2|2,3|...)=\({\varepsilon_0}\)
- (0,1,2,2)=(0|1,2|1,2|1,2|...)=\({\varepsilon_0×{\omega^{\omega^2}}}\)
- (0,1,2,2,3,4)=\({\varepsilon_0^2}\)
- (0,1,2,3)=(|0,1,2|2,3,4|4,5,6|...)=\({\varepsilon_1}\)
- (0,1,3)=(0|1|2|3|...)=\({\psi_0({\omega})}\)
- (0,1,3,2)=\({\psi_0({\omega}+1)}\)
- (0,1,3,2,3)=\({\psi_0({\omega+2})}\)
- (0,1,3,2,4)=\({\psi_0({\omega×2})}\)
- (0,1,3,3)=(0|1,3|2,4|3,5|...)=\({\psi_0({\omega^2})}\)
- (0,1,3,3,2,4,4)=\({\psi_0({\omega^2×2})}\)
- (0,1,3,3,4)=\({\psi_0({\omega^{\omega}})}\)
- (0,1,3,3,4,5)=\({\psi_0({\psi_0(0)})}\)
- (0,1,3,4)=\({\psi_0({\Omega})}\)
- (0,1,3,4,2)=\({\psi_0({\Omega+1})}\)
- (0,1,3,4,2,4,5)=\({\psi_0({\Omega×2})}\)
- (0,1,3,4,3)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,3,4,3,2,4,5)=\({\psi_0({\Omega×({\omega+1})})}\)
- (0,1,3,4,3,3)=\({\psi_0({\Omega×{\omega×2}})}\)
- (0,1,3,4,3,4)=\({\psi_0({\Omega×{\omega^2}})}\)
- (0,1,3,4,4)=\({\psi_0({\Omega×{\omega^{\omega}}})}\)
- (0,1,3,4,4,5,7,8)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
- (0,1,3,4,5)=\({\psi_0({\Omega^2})}\)
- (0,1,3,4,5,2,4,5,6)=\({\psi_0({\Omega^2×2})}\)
- (0,1,3,4,6)=\({\psi_0({\Omega^{\omega}})}\)
- (0,1,3,4,6,3)=\({\psi_0({\Omega^{\omega}×2})}\)
- (0,1,3,4,6,5)=\({\psi_0({\Omega^{\omega+1}})}\)
- (0,1,3,4,6,5,7)=\({\psi_0({\Omega^{\omega×2}})}\)
- (0,1,3,4,6,6)=\({\psi_0({\Omega^{\omega^{\omega}}})}\)
- (0,1,3,4,6,7)=\({\psi_0({\Omega^{\Omega}})}\)
- (0,1,3,5)=(0|1,3|4,6|7,9|...)=\({\psi_0({\psi_1(0)})}\)
- (0,1,3,5,3)=\({\psi_0({\psi_1(0)×{\omega}})}\)
- (0,1,3,5,4)=\({\psi_0({\psi_1(0)×{\Omega}})}\)
- (0,1,3,5,5)=\({\psi_0({\psi_1(0)^{\omega}})}\)
- (0,1,3,5,6)=\({\psi_0({\psi_1(0)^{\Omega}})}\)
- (0,1,3,5,7)=\({\psi_0({\psi_1(1)})}\)
- (0,1,3,5,7,9)=\({\psi_0({\psi_1(2)})}\)
- (0,1,3,6)=\({\psi_0({\psi_1({\omega})})}\)
- (0,1,3,6,10...)=\({\psi_0({\Omega_{\omega}})}\)
- m=1
- (0,1,1,2,2)=(|0,1,1,2|1,2,2,3|2,3,3,4|...)=\({\varepsilon_0}\)
- (0,1,1,2,2,2)=(|0,1,1,2,2|1,2,2,3,3|2,3,3,4,4|...)=\({\varepsilon_1}\)
- (0,1,1,2,2,3)=\({\psi_0({\omega})}\)
- (0,1,1,2,2,3,2)=(0,1|1,2,2,3|1,2,2,3|1,2,2,3|...)=\({\psi_0({\omega})×{\omega^{\omega^{\omega+1}}}}\)
- (0,1,1,2,2,3,2,2)=(|0,1,1,2,2,3,2|1,2,2,3,3,4,3|2,3,3,4,4,5,4|...)=\({\psi_0({\omega+1})}\)
- (0,1,1,2,2,3,2,3)=\({\psi_0({\omega×2})}\)
- (0,1,1,2,2,3,2,3,3)=\({\psi_0({\omega^2})}\)
- (0,1,1,2,2,3,3)=(|0,1,1,2,2,3|2,3,3,4,4,5|4,5,5,6,6,7|...)=\({\psi_0({\Omega})}\)
- (0,1,1,2,2,3,3,2,2)=\({\psi_0({\Omega+1})}\)
- (0,1,1,2,2,3,3,2,3)=\({\psi_0({\Omega+{\omega}})}\)
- (0,1,1,2,2,3,3,3)=\({\psi_0({\Omega×2})}\)
- (0,1,1,2,2,3,3,4)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,1,2,2,3,3,4,3,3)=\({\psi_0({\Omega×({\omega+1})})}\)
- (0,1,1,2,2,3,3,4,4)=\({\psi_0({\Omega^2})}\)
- (0,1,2)=\({\psi_0({\Omega^{\omega}})}\)
第2-\(m\)-階差数列[]
表記[]
\((a_0,a_1,・・・a_k)_m[n]\)
計算法[]
- rule1:\((a_0,a_1,・・・a_{k-1},0)_m[n]=(a_0,a_1,・・・a_{k-1})_m[n+1]\)
- rule2:
- \(b=Max\{-m,a_k-a_{k-1}\}\)
- \(c_l=\begin{cases}0&\text{if} l=0\\min\{d|(a_d-a_{d-1}<b)∧(c_{l-1}<d)\}&\text{otherwise}\end{cases}\)
- \(p(d)=Max\{e|(a_e<a_d)∧(e<d)∧(∃f[e=c_f])\}\)
- \(i=\begin{cases}p(k)&\text{if} a_k-a_{p(k)}=1\\Max\{d|(∃e[p^e(k)=d])∧(a_k-a_{p(k)}>a_d-a_{p(d)})\}&\text{otherwise}\end{cases}\)
- \(A=(a_0,a_1...a_{i-1})_m\)
- \(B_l=(a_i,a_{i+1}...a_{k-1})_m+(a_k-a_i-1)×l\)
- \((a_0,a_1,・・・a_{k-1},a_k)_m[n]=A\frown B_0\frown B_1\frown...B_k[n]\)
補足[]
- \(b\)を最小値とする階差表記に変換→先頭の項で-1-ヒドラ数列を計算
- \(p(d)\)は階差表記の先頭部分
例
- \((0,1,2,3,3,4,5,5,6,7,8)_{-1}→(0[1,1,1],3[1,1],5[1,1],8)→(0,3,5,8)→\)
- \((0,3|5|7||9|...)→(0,1,2,3,3,4,5|5,6,7|7,8,9|9,10,11|...)\)
評価[]
- m=-1
- (0,1,2)=(0[1],2)=\({\varepsilon_0}\)
- (0,1,2,2)=(0[1,1],2)=\({\varepsilon_1}\)
- (0,1,2,2,3)=(0[1,1],2,3)=(0,1,2|2|2|2|...)=\({\psi_0({\omega})}\)
- (0,1,2,2,3,4)=(0[1,1],2[1],4)=(|0,1,2,2,3|3,4,5,5,6|6,7,8,8,9|...)=\({\psi_0({\Omega})}\)
- (0,1,2,2,3,4,2,3,4)=(0[1,1],2[1,1],2[1],4)=\({\psi_0({\Omega×2})}\)
- (0,1,2,2,3,4,3)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,2,2,3,4,4)=\({\psi_0({\Omega^2})}\)
- (0,1,2,2,3,4,4,5)=\({\psi_0({\Omega^{\omega}})}\)
- (0,1,2,2,3,4,4,5,6)=\({\psi_0({\Omega^{\Omega}})}\)
- (0,1,2,3)=\({\psi_0({\psi_1(0)})}\)
- (0,1,2,3,2)=\({\psi_0({\psi_1(0)+1})}\)
- (0,1,2,3,2,3,4)=\({\psi_0({\psi_1(0)+{\Omega}})}\)
- (0,1,2,3,2,3,4)=\({\psi_0({\psi_1(0)×2})}\)
- (0,1,2,3,2,3,4,4)=\({\psi_0({\psi_1(0)×{\Omega}})}\)
- (0,1,2,3,2,3,4,5)=\({\psi_0({\psi_1(0)^2})}\)
- (0,1,2,3,2,3,4,5,4,5,6,7)=\({\psi_0({\psi_1(0)^{\psi_1(0)}})}\)
- (0,1,2,3,3)=\({\psi_0({\psi_1(1)})}\)
- (0,1,2,3,3,4,5)=\({\psi_0({\psi_1({\Omega})})}\)
- (0,1,2,3,3,4,5,5,6,7,8)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
- (0,1,2,3,3,4,5,6)=\({\psi_0({\psi_1({\Omega_2})})}\)
- (0,1,3)=\({\psi_0({\Omega_{\omega}})}\)
- (0,1,3,3)=(0[1,2],3)=(|0,1,3|2,3,5|4,5,7|...)
- (0,1,3,2)=\({\psi_0({\Omega_{\omega}+1})}\)
- (0,1,3,2,3)=\({\psi_0({\Omega_{\omega}+{\omega}})}\)
- (0,1,3,2,3,4)=\({\psi_0({\Omega_{\omega}+{\Omega}})}\)
- (0,1,3,2,3,4,5)=\({\psi_0({\Omega_{\omega}+{\psi_1(0)}})}\)
- (0,1,3,2,3,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
- (0,1,3,2,3,5,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\omega}}})}\)
- (0,1,3,2,3,5,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\Omega}}})}\)
- (0,1,3,2,3,5,4,5,6)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\Omega^2}}})}\)
- (0,1,3,2,3,5,4,5,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})^2}})}\)
- (0,1,3,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
- (0,1,3,3,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\omega}})}})}\)
- (0,1,3,3,4,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega}})}})}\)
- (0,1,3,3,4,6)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}})}\)
- (0,1,3,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}\)
- (0,1,3,4,5)=(0[1,2,1],5)=(|0,1,3,4|4,5,7,8|8,9,11,12|...)
- (0,1,3,4,4)=(0[1,2,1],4)=(|0,1,3,4|3,4,6,7|6,7,9,10|...)
- (0,1,3,4,3,4,6,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}})}\)
- (0,1,3,4,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2×2}})}})}\)
- (0,1,3,4,4,5,6)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2×{\Omega}}})}})}\)
- (0,1,3,4,4,5,6,6,7,9)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2×{\psi_1({\Omega_{\omega}+{\Omega_2}})}}})}})}\)
- (0,1,3,4,4,5,6,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2^2}})}})}\)
- (0,1,3,4,4,5,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_2({\Omega_{\omega}})}})}})}\)
- (0,1,3,4,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_2({\Omega_{\omega}+{\Omega_3}})}})}})}\)
- (0,1,3,4,6)=\({\psi_0({\Omega_{\omega}×2})}\)
- (0,1,3,5)=\({\psi_0({\Omega_{\omega}×{\omega}})}\)
- (0,1,3,5,6,8)=\({\psi_0({\Omega_{\omega}×({\omega+1})})}\)
- (0,1,3,5,6,8,10)=\({\psi_0({\Omega_{\omega}×{\omega×2}})}\)
- (0,1,3,5,7)=\({\psi_0({\Omega_{\omega}×{\omega^2}})}\)
- (0,1,3,6)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega}}})}\)
- (0,1,3,6,10...)=\({\psi_0({\Omega_{\omega}×{\varepsilon_0}})}\)
- m=0
- (0,1,1,2,2)=(0[1,0,1],2)=\({\varepsilon_0}\)
- (0,1,1,2,2,3)=\({\psi_0({\omega})}\)
- (0,1,1,2,2,3,2,3,3,4,4)=(0[1,0,1,0,1],2[1,0,1],4)=\({\psi_0({\Omega})}\)
- (0,1,1,2,2,3,2,3,3,4,4,2,3,3,4,4)=\({\psi_0({\Omega×2})}\)
- (0,1,1,2,2,3,2,3,3,4,4,3)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,1,2,2,3,2,3,3,4,4,4)=\({\psi_0({\Omega^2})}\)
- (0,1,1,2,2,3,2,3,3,4,4,5)=\({\psi_0({\Omega^{\omega}})}\)
- (0,1,1,2,2,3,2,3,3,4,4,5,4,5,5,6,6)=\({\psi_0({\Omega^{\Omega}})}\)
- (0,1,1,2,2,3,3)=\({\psi_0({\psi_1(0)})}\)
- (0,1,1,2,2,3,3,2)=\({\psi_0({\psi_1(0)+1})}\)
- (0,1,1,2,2,3,3,2,3,3,4,4)=\({\psi_0({\psi_1(0)+{\Omega}})}\)
- (0,1,1,2,2,3,3,2,3,3,4,4,5,5)=\({\psi_0({\psi_1(0)×2})}\)
- (0,1,1,2,2,3,3,2,3,3,4,4,5,5,4)=\({\psi_0({\psi_1(0)×{\Omega}})}\)
- (0,1,1,2,2,3,3,2,3,3,4,4,5,5,4,5,5,6,6,7,7)=\({\psi_0({\psi_1(0)^2})}\)
- (0,1,1,2,2,3,3,3)=\({\psi_0({\psi_1(1)})}\)
- (0,1,1,2,2,3,3,4)=\({\psi_0({\psi_1({\omega})})}\)
- (0,1,1,2,2,3,3,4,3,4,4,5,5)=\({\psi_0({\psi_1({\Omega})})}\)
- (0,1,1,2,2,3,3,4,3,4,4,5,5,6,5,6,6,7,7,8,8)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
- (0,1,1,2,2,3,3,4,3,4,4,5,5,6,6)=\({\psi_0({\psi_1({\Omega_2})})}\)
- (0,1,2)=\({\psi_0({\Omega_{\omega}})}\)
- (0,1,2,2)=\({\psi_0({\Omega_{\omega}+1})}\)
- (0,1,2,2,3,3)=(0[1,1,0,1],3)=(|0,1,2,2,3|2,3,4,4,5|4,5,6,6,7|...)
- (0,1,2,2,3,2,3,3,4,4)=(|0[1,1,0,1],2[1,0,1],4)=\({\psi_0({\Omega_{\omega}+{\Omega}})}\)
- (0,1,2,2,3,2,3,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
- (0,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
- (0,1,2,2,3,3,4,3,4,4,5,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega}})}})}\)
- (0,1,2,2,3,3,4,4)=(|0,1,2,2,3,3,4|3,4,5,5,6,6,7|6,7,8,8,9,9,10|...)
- \(={\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}\)
- (0,1,2,2,3,4)=\({\psi_0({\Omega_{\omega}×2})}\)
- (0,1,2,3)=\({\psi_0({\Omega_{\omega}×{\omega^2}})}\)
- (0,1,3)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega}}})}\)
- (0,1,3,4,6)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega×2}}})}\)
- (0,1,3,5)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega^2}}})}\)
- (0,1,3,6)=\({\psi_0({\Omega_{\omega}×{\omega^{\omega^{\omega}}}})}\)
- (0,1,3,10...)=\({\psi_0({\Omega_{\omega}×{\varepsilon_0}})}\)
- m=1
- (0,1,1,2,1,2,2,3,2)=(0[1,0,1,-1,1,0,1]2)=\({\varepsilon_0}\)
- (0,1,1,2,1,2,2,3,2,1,2,2,3,2)=\({\varepsilon_1}\)
- (0,1,1,2,1,2,2,3,2,2)=(0[1,0,1],1[1,0,1],2,2)=\({\psi_0({\omega})}\)
- (0,1,1,2,1,2,2,3,2,3)=\({\psi_0({\omega^{\omega}})}\)
- (0,1,1,2,1,2,2,3,2,3,2)=\({\psi_0({\omega^{\omega}+1})}\)
- (0,1,1,2,1,2,2,3,2,3,2,1,2,2,3,2)=\({\psi_0({\omega^{\omega}+2})}\)
- (0,1,1,2,1,2,2,3,2,3,2,2)=\({\psi_0({\omega^{\omega+1}})}\)
- (0,1,1,2,1,2,2,3,2,3,3,4,3)=(0[1,0,1,-1,1,0,1,-1,1,0,1],3)
- =(|0,1,1,2,1,2,2,3,2,3,3,4|2,3,3,4,3,4,4,5,4,5,5,6|4,5,5,6,5,6,6,7,6,7,7,8|...)
- (0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4)=\({\psi_0({\Omega})}\)
- (0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2)=\({\psi_0({\Omega}+1)}\)
- (0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2,1,2,2,3,2)=\({\psi_0({\Omega+2})}\)
- (0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2,2)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,2,3,3,4,3,4,4,5,4)=\({\psi_0({\Omega^2})}\)
- (0,1,1,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,3)=\({\psi_0({\Omega^{\omega}})}\)
- (S_2,S_2+1,S_2+2,S_2+2,S_2+3,S_2+4,S_2+4,S_2+5,S_2+6,4)=\({\psi_0({\Omega^{\Omega}})}\)
- (S_2,S_2+1,S_2+2,3)=\({\psi_0({\psi_1(0)})}\)
- (0,1,1,2,2)=\({\psi_0({\Omega_{\omega}})}\)
- (0,1,1,2,2,2)=(|0,1,1,2,2|1,2,2,3,3|2,3,3,4,4|...)
- (0,1,1,2,2,1,2,2,3,2)=\({\psi_0({\Omega_{\omega}+1})}\)
- (0,1,1,2,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4)=\({\psi_0({\Omega_{\omega}+{\Omega}})}\)
- (0,1,1,2,2,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,4,5,5,6,5)=\({\psi_0({\Omega_{\omega}+{\psi_1(0)}})}\)
- (0,1,1,2,2,1,2,2,3,2,3,3,4,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
- (0,1,1,2,2,1,2,2,3,2,3,3,4,3)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
- (0,1,1,2,2,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}×2})}\)
- (0,1,1,2,2,1,2,2,3,3,2)=\({\psi_0({\Omega_{\omega}×2+1})}\)
- (0,1,1,2,2,1,2,2,3,3,2,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}×3})}\)
- (0,1,1,2,2,1,2,2,3,3,2,2)=\({\psi_0({\Omega_{\omega}×{\omega}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,3)=\({\psi_0({\Omega_{\omega}×{\Omega}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,3,2,3,3,4,3,4,4,5,5)=\({\psi_0({\Omega_{\omega}×{\psi_1({\Omega_{\omega}})}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}^2})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2)=\({\psi_0({\Omega_{\omega}^2+1})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2,1,2,2,3,3,2,3,3,4)=\({\psi_0({\Omega_{\omega}^2}+{\psi_1({\Omega_{\omega}×2})})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2,2)=\({\psi_0({\Omega_{\omega}^2+{\psi_1({\Omega_{\omega}×2})×{\omega}}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,2,3,3,4,4,3,4,4,5,5,4,5,5,6,6)=\({\psi_0({\Omega_{\omega}^2+{\psi_1({\Omega_{\omega}^2})}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3)=\({\psi_0({\Omega_{\omega}^2+{\psi_1({\Omega_{\omega}^2+1})}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,1,2,2,3,3)=\({\psi_0({\Omega_{\omega}^2+{\Omega_{\omega}}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,1,2,2,3,3,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}^2×2})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,2)=\({\psi_0({\Omega_{\omega}^2×{\omega}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,2,3,3,4,4)=\({\psi_0({\Omega_{\omega}^3})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,3)=\({\psi_0({\Omega_{\omega}^{\omega}})}\)
- (0,1,1,2,2,1,2,2,3,3,2,3,3,4,4,3,4,4,5,5)=\({\psi_0({\Omega_{\omega}^{\Omega_{\omega}}})}\)
- (0,1,1,2,2,2)=\({\psi_0({\psi_{\omega}(0)})}\)
ベクレミシェフ行列[]
表記[]
- \(k,m,n,a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1}...a_{x,m})\)
- 正規形:\(S_0S_1...S_k[n]\)
計算法[]
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:\(S_0S_1...S_{k-1}(0,0...0,i+1...a_m)[n]=S_0S_1...S_{k-1}(0,0...n,i...a_m)[n]\)
- rule4:
- \(r=Max\{b|∃c[((c<m)⇒(∀d,c<d≤m[(a_{b,d}=a_{k,d}]))∧(a_{b,c}<a_{k,c})]\}\)
- \(A=S_0S_1...S_r\)
- \(B=S_{r+1}S_{r+2}...S_{k-1}(a_{k,0}-1,a_{k,1}...a_{k,m})\)
- \(S_0S_1...S_k[n]=A\underbrace{BB...B}_n[n]\)
評価[]
- (0,1)=\({\varepsilon_0}\)
- (0,1)(0,0)(0,1)=\({\varepsilon_0×2}\)
- (0,1)(1,0)=\({\varepsilon_0×{\omega}}\)
- (0,1)(1,0)(0,1)=\({\varepsilon_0^2}\)
- (0,1)(2,0)=\({\varepsilon_0^{\omega}}\)
- (0,1)(2,0)(0,1)=\({\varepsilon_0^{\varepsilon_0}}\)
- (0,1)(3,0)=\({\varepsilon_0^{\varepsilon_0^{\omega}}}\)
- (0,1)(0,1)=\({\varepsilon_1}\)
- (1,1)=\({\psi_0({\omega})}\)
- (1,1)(0,1)=\({\psi_0({\omega+1})}\)
- (1,1)(0,1)(1,1)=\({\psi_0({\omega×2})}\)
- (1,1)(1,1)=\({\psi_0({\omega^2})}\)
- (2,1)=\({\psi_0({\omega^{\omega}})}\)
- (0,2)=\({\psi_0({\psi_0(0)})}\)
- (0,0,1)=\({\psi_0({\Omega})}\)
- (0,0,1)(0,1,0)=\({\psi_0({\Omega+1})}\)
- (0,0,1)(0,1,0)(0,0,1)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
- (0,0,1)(0,2,0)=\({\psi_0({\Omega+{\psi_0({\Omega+1})}})}\)
- (0,0,1)(0,0,1)=\({\psi_0({\Omega×2})}\)
- (1,0,1)=\({\psi_0({\Omega×{\omega}})}\)
- (0,1,1)=\({\psi_0({\Omega×{\psi_0(0)}})}\)
- (0,0,2)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
- (0,0,0,1)=\({\psi_0({\Omega^2})}\)
- (0,0...0,1)=\({\psi_0({\Omega^{\omega}})}\)
弱行列(仮)[]
表記[]
- \(k,m,n,a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1}...a_{x,m})\)
- 正規形:\(S_0S_1...S_k[n]\)
計算法[]
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:
- \(r=Max\{b|a_{b,0}<a_{k,0}\}\)
- \({\Delta}=(d_0,d_1...d_m)\)
- \(d_c=\begin{cases}a_{k,c}-a_{r,c}&\text{if} a_{r,c+1}<a_{k,c+1}\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1...S_{r-1}\)
- \(B_0=S_rS_{r+1}...S_{k-1}\)
- \(B_{b+1}=B_b+{\Delta}\)
\(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)
評価[]
- (0,0)(1,1)=\({\varepsilon_0}\)
- (0,0)(1,1)(0,0)(1,1)=\({\varepsilon_0×2}\)
- (0,0)(1,1)(1,0)=\({\varepsilon_0×{\omega}}\)
- (0,0)(1,1)(1,0)(2,1)=\({\varepsilon_0^2}\)
- (0,0)(1,1)(1,0)(2,1)(2,0)=\({\varepsilon_0^{\omega}}\)
- (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)=\({\varepsilon_0^{\varepsilon_0}}\)
- (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)=\({\varepsilon_0^{\varepsilon_0^{\omega}}}\)
- (0,0)(1,1)(1,1)=\({\varepsilon_1}\)
- (0,0)(1,1)(2,1)=\({\psi_0({\omega})}\)
- (0,0)(1,1)(2,1)(1,1)=\({\psi_0({\omega+1})}\)
- (0,0)(1,1)(2,1)(1,1)(2,1)=\({\psi_0({\omega×2})}\)
- (0,0)(1,1)(2,1)(2,1)=\({\psi_0({\omega^2})}\)
- (0,0)(1,1)(2,1)(3,1)=\({\psi_0({\omega^{\omega}})}\)
- (0,0)(1,1)(2,2)=\({\psi_0({\psi_0(0)})}\)
- (0,0,0)(1,1,1)=\({\psi_0({\Omega})}\)
- (0,0,0)(1,1,1)(1,1,0)=\({\psi_0({\Omega+1})}\)
- (0,0,0)(1,1,1)(1,1,0)(2,2,1)=\({\psi_0({\Omega+{\psi_0({\Omega})}})}\)
- (0,0,0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)=\({\psi_0({\Omega+{\psi_0({\Omega+1})}})}\)
- (0,0,0)(1,1,1)(1,1,1)=\({\psi_0({\Omega×2})}\)
- (0,0,0)(1,1,1)(2,1,1)=\({\psi_0({\Omega×{\omega}})}\)
- (0,0,0)(1,1,1)(2,2,1)=\({\psi_0({\Omega×{\psi_0(0)}})}\)
- (0,0,0)(1,1,1)(2,2,2)=\({\psi_0({\Omega×{\psi_0({\Omega})}})}\)
- (0,0,0,0)(1,1,1,1)=\({\psi_0({\Omega^2})}\)
- (0,0...0)(1,1...1)=\({\psi_0({\Omega^{\omega}})}\)
偽原始数列[]
小偽原始数列+大SZNO数列
表記[]
\((a_0,a_1,a_2...a_k)[n]\)
定義[]
- rule1:\((0)[n]=n+1\)
- rule2:\((a_0,a_1,a_2...a_{k-1},0)[n]=(a_0,a_1,a_2...a_{k-1})[n+1]\)
- rule3:
- \(p(b)=Max\{c|(a_c=0)∧(c<b)\}\)
- \(i=Max\{b|(a_b=0)∧(b-1-p(b-1)<k-p(k))\}\)
- \(A=(a_0,a_1,a_2...a_{i-1})\)
- \(B=(a_i,a_{i+1},a_{i+2}...a_{k-1})\)
- \((a_0,a_1,a_2...a_k)[n]=A\underbrace{\frown B\frown B...B}_n[n]\)
評価[]
- (0,1)=\({\omega}\)
- (0,1,0,0,1)=\({\omega×2}\)
- (0,1,0,1)=(|0,1,0|0,1,0|0,1,0|...)=\({\omega^2}\)
- (0,1,0,1,0,0,1,0,1)=\({\omega^2×2}\)
- (0,1,0,1,0,1)=\({\omega^3}\)
- (0,1,2)=(|0,1|0,1|0,1|...)=\({\omega^{\omega}}\)
- (0,1,2,0,1)=\({\omega^{\omega+1}}\)
- (0,1,2,0,1,0,1,2)=\({\omega^{\omega×2}}\)
- (0,1,2,0,1,2)=\({\omega^{\omega^2}}\)
- (0,1,2,3)=\({\omega^{\omega^{\omega}}}\)
- (0,1,2...)=\({\varepsilon_0}\)
小多重階差数列システム[]
表記[]
\((a_1,a_2,a_3...a_k)[n]\)
計算法[]
- rule1:\((1)[n]=n+1\)
- rule2:\((a_1,a_2,a_3...a_{k-1},1)[n]=(a_1,a_2,a_3...a_{k-1})[n+1]\)
- rule3:
- \(a_{0,b}=a_b\)
- \(a_{c+1,b}=a_{c,b+1}-a_{c,b}\)
- \(d=Max\{c|a_{c,k-c}>1\}\)
- \(e=Max\{b|a_{d,b}=1\}\)
- \(A=(a_{d,1},a_{d,2},a_{d,3}...a_{d,e-1})\)
- \(B=(a_{d,e},a_{d,e+1},a_{d,e+2}...a_{d,k-d-1})\)
- \((f_{d,1},f_{d,2},f_{d,3}...)=A\frown \underbrace{B\frown B\frown B...B}_n\)
- \(f_{c,1}=a_{c,1}\)
- \(f_{c,b+1}=f_{c,b}+f_{c+1,b}\)
- \((a_1,a_2,a_3...a_k)[n]=(f_{0,1},f_{0,2},f_{0,3}...)[n]\)
評価[]
- (1,2)=(|1|1|1|...)=\({\omega}\)
- (1,2,3)=(|1,2|1,2|1,2|...)=\({\omega^2}\)
- (1,2,4)=(1[1,2])=(1[|1|1|1|...])=(1,2,3,4...)=\({\omega^{\omega}}\)
- (1,2,4,5)=(|1,2,4|1,2,4|1,2,4|...)=\({\omega^{\omega+1}}\)
- (1,2,4,5,7)=(1[1,2,1,2])=(1[1,2|1|1|1|...])=(1,2,4,5,6,7...)=\({\omega^{\omega×2}}\)
- (1,2,4,7)=(1[1,2,3])=(1[|1,2|1,2|1,2|...])=(1,2,4,5,7,8,10...)=\({\omega^{\omega^2}}\)
- (1,2,4,8)=(1[1[1,2]])=(1[1,2,3,4...])=(1,2,4,7,11...)=\({\omega^{\omega^{\omega}}}\)
- (1,2,4,8,13)=(1[1,2,4,5])=(1[|1,2,4|1,2,4|1,2,4|...])=(1,2,4,8,9,11,15,16,18,22...)=\({\omega^{\omega^{\omega+1}}}\)
- (1,2,4,8,13,20)=(1[1,2,4,5,7])=(1[1,2,4,5,6,7...])=(1,2,4,8,13,19,26...)=\({\omega^{\omega^{\omega×2}}}\)
- (1,2,4,8,15)=(1[1,2,4,7])=(1[1,2,4,5,7,8,10])=(1,2,4,8,13,20,28,38...)=\({\omega^{\omega^{\omega^2}}}\)
- (1,2,4,8,16)=(1[1,2,4,8])=(1[1,2,4,7,11...])=(1,2,4,8,15,26...)=\({\omega^{\omega^{\omega^{\omega}}}}\)
- (1,2,4,8...2^n)=\({\varepsilon_0}\)
小SZ数列(SSZSs)[]
\(SpS+SZ\)
表記[]
\((a_0,a_1,a_2...a_k)[n]\
計算法[]
- \(p(x)=\begin{cases}Max\{b|(b<x)∧(a_b<a_x)\}&\text{if} ∃b\\-1&\text{otherwise}\end{cases}\)
- rule1: \((k=0)∧(a_k=0)\)
- \((0)[n]=n^2\)
- rule2: \((a_k=0)∧(p(k)=-1)\)
- \((a_0,a_1,a_2...a_{k-1},a_k)[n]=(a_0,a_1,a_2...a_{k-1})[n^2]\)
- rule3: \(p(k)=-1\)
- \((a_0,a_1,a_2...a_k)[n]=(a_0,a_1,a_2...a_k-1)[n^2]\)
- rule4: \(a_k-a_{p(k)}=1\)
- \(r=p(p(k))+1\)
- \(A=(a_0,a_1,a_2...a_{r-1})\)
- \(B=(a_r,a_{r+1},a_{r+2}...a_{k-1})\)
- \((a_0,a_1,a_2...a_k)[n]=A\frown \{B+n^2\}[n^2]\)
- rule5:
- \(r=p(k)\)
- \(A=(a_0,a_1,a_2...a_{r-1})\)
- \(B=(a_r,a_{r+1},a_{r+2}...a_{k-1},a_k-1)\)
- \((a_0,a_1,a_2...a_k)[n]=A\frown \underbrace{B\frown B\frown B...B}_{n^2+1}[n^2]\)
素因数列システム[]
計算法[]
- \(p_i:i\)番目の素数(\(p_0=2\))
- \(□:0\)個以上の項
- \(m,j:1\)以上の自然数
- rule1: \(()[n]=n\)
- rule2: \((□,1)[n]=(□)[n+1]\)
- rule3: \((□,m×2)[n]=(□,\underbrace{m,m,...m}_n)[n]\)
- rule4: \((□,m×p_j)[n]=(□,m×p_{j-1}^n)[n]\)
ただし、\(m\)は\(p_j\)未満の素数で割り切れない。
未定義[]
小NZ数列システム(SNZSs)[]
\(L_1+NZ\)
- (1)=[1,0]=\({\omega}\)
- (1,0)=[1,1]=\({\omega+1}\)
- (1,0,0)=[1,2]=\({\omega+2}\)
- (0,1)=[2,0]=\({\omega×2}\)
- (0,1,0)=[2,1]=\({\omega×2+1}\)
- (0,0,1)=[3,0]=\({\omega×3}\)
- (1,0,1)=[1,0,0]=\({\omega^2}\)
- (1,0,0,1)=[1,1,0]=\({\omega^2+{\omega}}\)
- (0,1,0,1)=[2,0,0]=\({\omega^2×2}\)
- (1,0,1,0,1)=[1,0,0,0]=\({\omega^3}\)
- (1,1)=[1[0]0]=\({\omega^{\omega}}\)
- (1,1,0)=[1[0]1]=\({\omega^{\omega}+1}\)
- (1,1,0,1)=[1[0],1,0]=\({\omega^{\omega}+{\omega}}\)
- (1,1,0,1,0,1)=[1[0]1,0,0]=\({\omega^{\omega}+{\omega^2}}\)
- (0,1,1)=[2[0]0]=\({\omega^{\omega}×2}\)
- (1,0,1,1)=[1,0[0]0]=\({\omega^{\omega+1}}\)
- (1,1,0,1,1)=[1[0]0[0]0]=\({\omega^{\omega×2}}\)
- (1,1,1)=[1[1]0]=\({\omega^{\omega^2}}\)
- (2)=[1[1,0]0]=\({\omega^{\omega^{\omega}}}\)
- (2,0,1)=[1[1,0]1,0]=\({\omega^{\omega^{\omega}}+{\omega}}\)
- (2,0,1,1)=[1[1,0]1[0]0]=\({\omega^{\omega^{\omega}}+{\omega^{\omega}}}\)
- (0,2)=[2[1,0]0]=\({\omega^{\omega^{\omega}}×2}\)
- (2,0,2)=[1[1,0]0[1,0]0]=\({\omega^{\omega^{\omega}×2}}\)
- (2,1)=[1[1,1]0]=\({\omega^{\omega^{\omega+1}}}\)
- (1,2)=[1[2,0]0]=\({\omega^{\omega^{\omega×2}}}\)
- (2,1,2)=[1[1,0,0]0]=\({\omega^{\omega^{\omega^2}}}\)
- (2,2)=[1[1[0]0]0]=\({\omega^{\omega^{\omega^{\omega}}}}\)
- (3)=\({\omega^{\omega^{\omega^{\omega^{\omega}}}}}\)
- (n)=\({\varepsilon_0}\)
第2小SZ数列(SSSZSs)[]
\(SPpS+SZ\)
- ((0,1)=\({\omega}\)
- (0,1,0,2)=\({\omega^2}\)
- (0,1,0,2,0,3,...)=(0,1,1)=\({\omega^{\omega}}\)
- (0,1,1,0,2)=\({\omega^{\omega+1}}\)
- (0,1,1,0,2,2)=\({\omega^{\omega^2}}\)
- (0,1,1,1)=\({\omega^{\omega^{\omega}}}\)
- (0,1,2)=\({\varepsilon_0}\)
- (0,1,2,0,2)=\({\varepsilon_0}×{\omega}\)
- (0,1,2,0,2,0,2,3)=\({\varepsilon_0^2}\)
- (0,1,2,0,2,2)=\({\varepsilon_0^{\omega}}\)
- (0,1,2,0,2,2,0,2,3)=\({\varepsilon_0^{\varepsilon_0}}\)
- (0,1,2,0,2,3)=\({\varepsilon_1}\)
- (0,1,2,0,2,3,0,3,4)=\({\varepsilon_2}\)
- (0,1,2,1)=\({\psi_0({\omega})}\)
- (0,1,2,1,0,2,3)=\({\psi_0({\omega+1})}\)
- (0,1,2,1,0,2,3,2)=\({\psi_0({\omega}^2)}\)
- (0,1,2,1,1)=\({\psi_0({\omega^{\omega}})}\)
- (0,1,2,1,2)=\({\psi_0({\psi_0(0)})}\)
- (0,1,2,1,3)=\({\psi_0({\Omega})}\)
- (0,1,2,2)=\({\psi_0({\Omega^{\omega}})}\)
- (0,1,2,3)=\({\psi_0({\Omega^{\varepsilon_0}})}\)
- (0,1,2,3,...n)=\({\psi_0({\Omega^{\Omega}})}\)
大SZ数列(LSZSs)[]
\(pS+SZ\)、\({\Omega}\)行BM?
- (0,1,1)=(|0,1|0,2|0,3|...)=\({\varepsilon_0}\)
- (0,1,1,0,2,1)=(0,1,1|0,2|0,3|0,4|...)=\({\varepsilon_0^2}\)
- (0,1,1,0,2,1,0,3,1)=(0,1,1,0,2,1|0,3|0,4|0,5|...)=\({\varepsilon_0^{\varepsilon_0}}\)
- (0,1,1,0,2,2)=(|0,1,1|0,2,1|0,3,1|...)=\({\varepsilon_1}\)
- (0,1,1,0,2,2,0,2,2)=(|0,1,1,0,2,2|0,2,1,0,3,2|0,3,1,0,3,2|...)=\({\varepsilon_2}\)
- (0,1,1,0,2,2,0,3,2,)=(|0,1,1,0,2,2|0,3,1,0,4,2|0,5,1,0,6,2|...)=\({\psi_0({\Omega})}\)
- (0,1,1,0,2,2,0,3,3)=(0,1,1|0,2,2|0,3,2|0,4,2|...)=\({\psi_0({\psi_1(0)})}\)
- (0,1,1,1)=(|0,1,1|0,2,2|0,3,3|...)=\({\psi_0({\Omega_{\omega}})}\)=B(0,0,0)(1,1,1)
- (0,1,1,1,0,2)=(|0,1,1,1|0,1,1,1|0,1,1,1|...)=B(0,0,0)(1,1,1)(1,0,0)
- (0,1,1,1,0,2,2)=(|0,1,1,1|0,2,1,1|0,3,1,1|...)=B(0,0,0)(1,1,1)(1,1,0)
- (0,1,1,1,0,2,2,1)=(0,1,1,1|0,2,2|0,3,3|0,4,4|...)=B(0,0,0)(1,1,1)(1,1,0)(2,2,1)
- (0,1,1,1,0,2,2,2)=(0,1,1,1|0,2,2,1|0,3,3,1|...)=B(0,0,0)(1,1,1)(1,1,1)
- (0,1,1,1,0,2,2,2,0,3)=(0,1,1,1|0,2,2,2|0,2,2,2|0,2,2,2|...)=B(0,0,0)(1,1,1)(2,0,0)
- (0,1,1,1,0,2,2,2,0,3,3,3)=(0,1,1,1|0,2,2,2|0,3,3,2|0,4,4,2|...)=B(0,0,0)(1,1,1)(2,2,2)
- (0,1,1,1,1)=(|0,1,1,1|0,2,2,2|0,3,3,3|...)=B(0,0,0,0)(1,1,1,1)
- (0,1,2)=(0|1|1|1|...)=(0,0,0,...)(1,1,1,...)
ペア大SZNO数列システム(PLSZNOSs)[]
- (0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega}))\)
- (0,0)(1,1)(0,0)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega}),0,{\beta_0}({\Omega}))\)
- (0,0)(1,1)(0,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),1)\)
- (0,0)(1,1)(0,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),1,2)\)
- (0,0)(1,1)(0,0)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega}),1,{\beta_0}({\Omega}))\)
- (0,0)(1,1)(0,0)(1,0)(2,1)(0,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),1,{\beta_0}({\Omega}),1)\)
- (0,0)(1,1)(0,0)(1,0)(2,1)(0,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega}),2)\)
- (0,0)(1,1)(0,0)(1,0)(2,1)(0,0)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega}),{\beta_0}({\Omega}))\)
- (0,0)(1,1)(0,0)(1,0)(2,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0))\)
- (0,0)(1,1)(0,0)(1,0)(2,1)(1,0)(2,0)(3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\beta_0}({\Omega}))))\)
- (0,0)(1,1)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(0,0)(1,1)(0,0)(1,0)(2,1)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})),1,{\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(0,0)(1,1)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),0,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1))\)
- (0,0)(1,1)(1,0)(0,0)(1,0)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,0,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(1,0)(0,0)(1,0)(0,0)(1,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,0,{\beta_0}({\Omega}),1))\)
- (0,0)(1,1)(1,0)(0,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,1))\)
- (0,0)(1,1)(1,0)(0,0)(1,0)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,2))\)
- (0,0)(1,1)(1,0)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(1,0)(0,0)(1,1)(0,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,{\beta_0}({\Omega}),0,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(1,0)(0,0)(1,1)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),1,{\beta_0}({\Omega}),1))\)
- (0,0)(1,1)(1,0)(1,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),2))\)
- (0,0)(1,1)(1,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\omega}))\)
- (0,0)(1,1)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
- (0,0)(1,1)(1,0)(2,1)(1,0)(2,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega}),{\beta_0}({\Omega}),{\beta_0}({\Omega})))\)
- (0,0)(1,1)(1,0)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0)))\)
- (0,0)(1,1)(1,0)(2,1)(2,0)(3,0)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,1)))\)
- (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega},0,{\beta_0}({\Omega}))))\)
- (0,0)(1,1)(1,1)=\({\beta_0}({\beta_0}({\Omega},0,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1))\)
- (0,0)(1,1)(2,0)(1,1)=\({\beta_0}({\beta_0}({\Omega},1,0,{\Omega}))\)
- (0,0)(1,1)(2,0)(1,1)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,0,{\Omega},1))\)
- (0,0)(1,1)(2,0)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,1))\)
- (0,0)(1,1)(2,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,2))\)
- (0,0)(1,1)(2,0)(3,1)=\({\beta_0}({\beta_0}({\Omega},1,{\beta_0}({\Omega})))\)
- (0,0)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},1,{\Omega}))\)
- (0,0)(1,1)(2,1)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},1,{\Omega},1))\)
- (0,0)(1,1)(2,1)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},1,{\Omega},1,{\Omega}))\)
- (0,0)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2))\)
- (0,0)(1,1)(2,1)(2,0)(1,1)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,0,{\Omega},2))\)
- (0,0)(1,1)(2,1)(2,0)(1,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,1))\)
- (0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},2,1,{\Omega}))\)
- (0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,1,{\Omega},2))\)
- (0,0)(1,1)(2,1)(2,0)(1,1)(2,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,2))\)
- (0,0)(1,1)(2,1)(2,0)(1,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},2,{\Omega}))\)
- (0,0)(1,1)(2,1)(2,0)(1,1)(2,1)(2,0)=\({\beta_0}({\beta_0}({\Omega},2,{\Omega},2))\)
- (0,0)(1,1)(2,1)(2,0)(2,0)=\({\beta_0}({\beta_0}({\Omega},3))\)
- (0,0)(1,1)(2,1)(2,0)(3,0)=\({\beta_0}({\beta_0}({\Omega},{\omega}))\)
- (0,0)(1,1)(2,1)(2,1)=\({\beta_0}({\beta_0}({\Omega},{\Omega}))\)
- (0,0)(1,1)(2,1)(3,0)=\({\beta_0}({\beta_0}({\beta_1(0)}))\)
偽バシク行列[]
- (0,0)(1,1)=\({\varepsilon_0}\)
- (0,0)(1,1)(0,0)(1,1)=|(0,0)(1,1)(0,0)|(1,0)(2,1)(1,0)|(2,0)(3,1)(2,0)|...=\({\varepsilon_1}\)
- (0,0)(1,1)(2,0)=|(0,0)(1,1)|(0,0)(1,1)|(0,0)(1,1)|...=\({\psi_0({\omega})}\)
- (0,0)(1,1)(2,0)(3,0)(4,1)=\({\psi_0({\psi_0(0)})}\)
- (0,0)(1,1)(2,0)(3,1)=\({\psi_0({\Omega})}\)
- (0,0)(1,1)(2,0)(3,1)(0,0)(1,1)=\({\psi_0({\Omega+1})}\)
- (0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1)(2,0)(3,1)=\({\psi_0({\Omega×2})}\)
- (0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(2,0)=\({\psi_0({\Omega×{\omega}})}\)
- (0,0)(1,1)(2,0)(3,1)(0,0)(1,1)(2,0)(3,1)=\({\psi_0({\Omega^2})}\)
- (0,0)(1,1)(2,0)(3,1)(4,0)=\({\psi_0({\Omega^{\omega}})}\)
- (0,0)(1,1)(2,0)(3,1)(4,0)(5,1)=\({\psi_0({\Omega^{\Omega}})}\)
- (0,0)(1,1)(2,2)=|(0,0)(1,0)|(2,0)(3,1)|(4,0)(5,1)|...=\({\psi_0({\psi_1(0)})}\)
- (0,0)(1,1)(2,2)(0,0)(1,1)(2,0)(3,1)(4,2)=\({\psi_0({\psi_1(0)×2})}\)
- (0,0)(1,1)(2,2)(0,0)(1,1)(2,2)=\({\psi_0({\psi_1(1)})}\)
- (0,0)(1,1)(2,2)(3,0)(4,1)=\({\psi_0({\psi_1({\Omega})})}\)
- (0,0)(1,1)(2,2)(3,0)(4,1)(5,0)(6,1)(7,2)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
- (0,0)(1,1)(2,2)(3,0)(4,1)(5,2)=\({\psi_0({\psi_1({\Omega_2})})}\)
- (0,0)(1,1)(2,2)(3,3)=\({\psi_0({\psi_1({\psi_2(0)})})}\)
- (0,0,0)(1,1,1)=\({\psi_0({\Omega_{\omega}})}\)
- (0,0,0)(1,1,1)(0,0,0)(1,1,1)
- =|(0,0,0)(1,1,1)(0,0,0)|(1,1,0)(2,2,1)(1,1,0)|(2,2,0)(3,3,1)(2,2,0)|...
- (0,0,0)(1,1,1)(0,0,0)(1,1,0)=\({\psi_0({\Omega_{\omega}+1})}\)
- (0,0,0)(1,1,1)(0,0,0)(1,1,0)(2,2,1)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
- (0,0,0)(1,1,1)(0,0,0)(1,1,1)=\({\psi_0({\Omega_{\omega}×2})}\)
- (0,0,0)(1,1,1)(2,0,0)=\({\psi_0({\Omega_{\omega}×{\omega}})}\)
- (0,0,0)(1,1,1)(2,0,0)(0,0,0)(1,1,1)
- =|(0,0,0)(1,1,1)(2,0,0)(0,0,0)|(1,1,0)(2,2,1)(3,0,0)(1,1,0)|(2,2,0)(3,3,1)(4,0,0)(2,2,0)|...
2次行列[]
- (0)(1)(3)(5)=(0,0)|(1,0)(3,0)|(4,3)(6,0)|(7,6)(9,0)|...
- (0,0)(1,0)(3,0)(4,3)=(0,0,0)|(1,0,0)(3,0,0)|(4,2,2)(6,0,0)|(7,4,4)(9,0,0)|...
- (0,0,0)(1,0,0)(3,0,0)(4,2,2)=(0,0,0,0)|(1,0,0,0)(3,0,0,0)|(4,2,1,1)(6,0,0)|(7,4,2,2)(9,0,0,0)|...
- (0)(1)(3)(6)=(0,0)(1,0)|(3,0)|(5,2)|(7,4)|...
- (0,0)(1,0)(3,0)(5,1)=(0)(1)|(3)|(5)|(7)|...
- (0)(1)(3)=(0,0)|(1,0)|(2,1)|(3,2)|...=B(0,0,0)(1,1,1)
- (0)(1)(3)(3)=(0,0)|(1,0)(3,0)|(2,1)(4,0)|(3,2)(5,0)|...=B(0,0,0)(1,1,1)(1,1,1)
- (0)(1)(3)(4)=B(0,0,0)(1,1,1)(2,0,0)
- (0,0)(1,0)(3,0)(4,1)=(0,0)|(1,0)(3,0)|(4,0)(6,0)|(7,0)(9,0)|...=B(0,0,0)(1,1,1)(2,1,0)
- (0,0)(1,0)(3,0)(4,1)(3,0)=(0,0)|(1,0)(3,0)(4,1)|(2,1)(4,0)(5,2)|(3,2)(5,0)(6,3)|...
- (0,0)(1,0)(3,0)(4,1)(3,0)(4,1)=B(0,0,0)(1,1,1)(2,1,0)(1,1,1)(2,1,0)
- (0,0)(1,0)(3,0)(4,1)(4,0)=B(0,0,0)(1,1,1)(2,1,0)(2,0,0)
- (0,0)(1,0)(3,0)(4,1)(5,0)=B(0,0,0)(1,1,1)(2,1,0)(3,0,0)
- (0,0)(1,0)(3,0)(4,1)(6,0)=(0,0)(1,0)(3,0)|(4,1)|(5,2)|(6,3)|...=B(0,0,0)(1,1,1)(2,1,0)(3,2,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)=(0,0)|(1,0)(3,0)|(4,1)(6,0)|(7,2)(9,0)|...=B(0,0,0)(1,1,1)(2,1,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(3,0,0)=(0,0,0)|(1,0,0)(3,0,0)(4,1,1)|(2,1,0)(4,0,0)(5,2,1)|(3,2,0)(5,0,0)(6,3,1)|...=B(0,0,0)(1,1,1)(2,1,1)(1,1,1)
- (0,0)(1,0)(3,0)(4,2)=(0,0,0)|(1,0,0)(3,0,0)|(4,1,1)(6,0,0)|(7,2,2)(9,0,0)|...
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)=(0,0,0)(1,0,0)(3,0,0)|(4,1,1)|(5,2,1)|(6,3,1)|...
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,0,0)=B(0,0,0)(1,1,1)(2,1,1)(3,0,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,1,0)=B(0,0,0)(1,1,1)(2,1,1)(3,1,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,1,1)=B(0,0,0)(1,1,1)(2,1,1)(3,1,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,0)=B(0,0,0)(1,1,1)(2,2,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,0)(7,0,0)=B(0,0,0)(1,1,1)(2,2,0)(3,3,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(3,0,0)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(3,0,0)(4,1,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(4,1,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(4,1,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)(2,1,1)(3,2,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(5,2,1)=B(0,0,0)(1,1,1)(2,2,1)(2,2,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(6,0,0)=B(0,0,0)(1,1,1)(2,2,1)(3,0,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(5,2,1)(6,3,1)=B(0,0,0)(1,1,1)(2,2,1)(3,3,1)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)=B(0,0,0)(1,1,1)(2,2,2)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(4,1,1)(6,0,0)=B(0,0,0)(1,1,1)(2,2,2)(2,1,1)(3,2,2)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(6,0,0)=B(0,0,0)(1,1,1)(2,2,2)(2,2,2)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,0,0)=B(0,0,0)(1,1,1)(2,2,2)(3,0,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,1,0)=B(0,0,0)(1,1,1)(2,2,2)(3,1,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,1,1)(8,2,0)=B(0,0,0)(1,1,1)(2,2,2)(3,1,1)(4,2,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,1,1)(9,0,0)=B(0,0,0)(1,1,1)(2,2,2)(3,1,1)(4,2,2)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,2,0)=B(0,0,0)(1,1,1)(2,2,2)(3,2,0)
- (0,0,0)(1,0,0)(3,0,0)(4,1,1)(6,0,0)(7,2,2)(9,0,0)=B(0,0,0)(1,1,1)(2,2,2)(3,3,3)
- (0,0)(1,0)(3,0)(4,2)=B(0,0,0,0)(1,1,1,1)
- (0,0)(1,0)(3,0)(5,1)=B(0(0)0)(1(0)1)
- (0,0)(1,0)(3,0)(5,1)(3,0)=(0,0)|(1,0)(3,0)(5,1)|(2,1)(4,0)(6,2)|(3,2)(5,0)(7,3)|...
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,2)=(0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)|(4,0,0)|(6,1,1)|(8,2,2)|...
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)=(0,0)(1,0)(3,0)(5,1)(2,1)|(4,0)|(6,1)|(8,2)|...
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,2)=(0,0)(1,0)(3,0)(5,1)(2,1)(4,0)|(6,1)|(8,1)|(10,1)|...
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)=(0,0)(1,0)(3,0)(5,1)(2,1)|(4,0)(6,1)|(8,0)(10,1)|(12,0)(14,1)|...
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,0)=(0,0)(1,0)(3,0)(5,1)|(2,1)(4,0)(6,1)|(7,6)(9,0)(11,1)|(12,11)(14,0)(16,1)|...
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,0(0)0)(2,2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)=(0,0)(1,0)(3,0)(5,1)|(2,1)(4,0)(6,1)|(3,2)(5,0)(7,1)|(4,3)(6,0)(8,1)|...=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,1)(7,0)(9,1)=B(0,0,0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(3,2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(6,0)=(0,0)(1,0)(3,0)(5,1)|(2,1)(4,0)(6,1)(4,0)|(5,4)(7,0)(9,1)(7,0)|(8,7)(10,0)(12,1)(10,0)|...
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,2)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,0(0)0)(3,2,1(0)1)(3,2,1(0)0)(4,2,0(0)0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,0)(4,0,0)(5,2,1)=B(0,0,0(0)0)(1,1,1(0)1)(1,1,1(0)0)(2,1,1(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(5,3)=B(0,0,0,0(0)0)(1,1,1,1(0)1)(1,1,1,0(0)0)(2,2,2,2(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(4,0)(6,1)=B(0(0)0)(1(0)1)(1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,0)=B(0(0)0)(1(0)1)(2(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,1)=B(0,0(0)0)(1,1(0)1)(2,1(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,1)(7,0)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,1)(7,0)(9,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,2)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,0(0)0)(3,2,1(0)1)(4,2,0(0)0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,0)(5,2,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,1,1(0)0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,0)(5,2,1)(7,0,0)(9,1,0)=B(0,0,0,0(0)0)(1,1,1,1(0)1)(2,1,1,0(0)0)(3,2,2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(5,3)=B(0,0,0,0(0)0)(1,1,1,1(0)1)(2,1,1,1(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(6,0)(8,1)=B(0,0(0)0)(1,1(0)1)(2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(6,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(7,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)0)(3,1(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,0)(10,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)=B(0(0)0)(1(0)1)(2(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(4,0)(6,1)(8,1)=B(0(0)0)(1(0)1)(2(0)1)(1(0)1)(2(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,0)(8,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(2,2(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,1)(8,0)(10,1)=B(0,0,0(0)0)(1,1,1(0)1)(2,2,2(0)1)(2,2,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(6,1)(8,1)=B(0(0)0)(1(0)1)(2(0)1)(2(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(8,0)(10,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(3,1(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(8,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(3,2(0)0)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(10,0)(12,1)(14,1)=B(0,0(0)0)(1,1(0)1)(2,2(0)1)(3,2(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,1)(10,1)=B(0(0)0)(1(0)1)(2(0)1)(3(0)1)
- (0,0)(1,0)(3,0)(5,1)(2,1)(4,0)(6,1)(8,2)=B(0(0)0)(1(0)1)(2(0)2)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)=B(0(0)0,0)(1(0)1,1)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(4,0,0)(6,1,0)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(4,0,0)(6,1,1)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)(2(0)2,1)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(5,0,0)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)(2(0)2,1)(2(0)0,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(5,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(1,1(0)1,0)(2,2(0)2,1)(2,1(0)0,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(6,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(1,1(0)1,0)(2,2(0)2,1)(2,2(0)0,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(6,1,0)(8,2,1)=B(0(0)0,0)(1(0)1,1)(1(0)1,0)(2(0)2,1)(2(0)2,0)(3(0)3,1)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(6,1,1)=B(0(0)0,0)(1(0)1,1)(1(0)1,1)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(7,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)0,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(9,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,1(0)0,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(10,0,0)(12,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,1(0)1,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(10,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)0,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(12,0,0)(14,1,0)=B(0,0,0(0)0,0)(1,1,1(0)1,1)(2,1,1(0)1,0)(3,2,1(0)1)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(12,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)1,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,0)(12,2,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)2,0)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,0,0)(10,1,1)=B(0,0(0)0,0)(1,1(0)1,1)(2,1(0)1,0)(3,2(0)1,1)
- (0,0,0)(1,0,0)(3,0,0)(5,1,0)(2,1,0)(4,0,0)(6,1,1)(8,1,0)=B(0,0(0)0,0)(1,1(0)1,1)(2,2(0)0,0)
小Y数列[]
小多重階差数列の拡張
- (1,3)=(1[2])=(1[1[1[...]]])=(1,2,4...)=\({\varepsilon_0}\)
- (1,3,4)=(|1,3|1,3|1,3|...)=\({\varepsilon_0×{\omega}}\)
- (1,3,4,7)=(1[2,1[2]])=(1[2,1[1[1[...]]]])=(1,3,4,6,10...)=\({\varepsilon_0^2}\)
- (1,3,4,7,11,18)=(1[2,1[2,1[2]]])=\({\varepsilon_0^{\varepsilon_0}}\)
- (1,3,5)=(1[2,2])=(1[2,1[2,1[2...]]])=(1,3,4,7,11,18...)=\({\varepsilon_1}\)
- (1,3,6)=(1[2[1]])=(1[2,2,2...])=(1,3,5,7...)=\({\psi_0({\omega})}\)
- (1,3,6,12)=(1[2[1[2]]])=\({\psi_0({\psi_0(0)})}\)
- (1,3,8)=(1[2[3]])=(1[2[1[2[1[2[...]]]]]])=\({\psi_0({\Omega})}\)
- (1[2[3],2])=\({\psi_0({\Omega+1})}\)
- (1[2[3],2[3]])=\({\psi_0({\Omega×2})}\)
- (1[2[3,1]])=\({\psi_0({\Omega×{\omega}})}\)
- (1[2[3,3]])=\({\psi_0({\Omega^2})}\)
- (1[2[3[1]]])=\({\psi_0({\Omega^{\omega}})}\)
- (1[2[3[4]]])=\({\psi_0({\Omega^{\Omega}})}\)
- (1,3,9)=(1[2[4]])=(1[1,2]₂)=\({\psi_0({\psi_1(0)})}\)
- (1[2[4],2])=(1[2[4],1[2[4],1[2[4]...]]])=\({\psi_0({\psi_1(0)+1})}\)
- (1[2[4],2[3]])=(1[2[4],2[(1[2[4],2[(1[2[4],2[...]])]])]])=\({\psi_0({\psi_1(0)+{\Omega}})}\)
- (1[2[4],2[4]])=(1[2[4],2[3[4[...]]]])=\({\psi_0({\psi_1(0)×2})}\)
- (1[2[4,1]])=\({\psi_0({\psi_1(0)×{\omega}})}\)
- (1[1,2,1]₂)=(1[2[4[5]]])=(1[2[4[1[2[4[1[2[4[...]]]]]]]]])
- (1[2[4,3]])=(1[2[4,1[2[4,1[2[4...]]]]]])=\({\psi_0({\psi_1(0)×{\Omega}})}\)
- (1[2[4,3[5]]])=\({\psi_0({\psi_1(0)^2})}\)
- (1[2[4,4]])=\({\psi_0({\psi_1(1)})}\)
- (1[2[4,5]])=\({\psi_0({\psi_1({\omega})})}\)
- (1[2[4[5]]])=\({\psi_0({\psi_1({\Omega})})}\)
- (1[1,2,1,2]₂)=\({\psi_0({\psi_1({\psi_1(0)})})}\)
- (1,3,9,26)=(1[2[4[7]]])=(1[1,2,3]₂)=(1[1,2,1,2,1,2...]₂)=(1[2[4[5[7[8[10[...]]]]]]])=\({\psi_0({\psi_1({\Omega_2})})}\)
- (1[2[4[7],4[7]]])=\({\psi_0({\psi_1({\Omega_2×2})})}\)
- (1[2[4[7,4]]])=\({\psi_0({\psi_1({\Omega_2×{\Omega}})})}\)
- (1[2[4[7,7]]])=\({\psi_0({\psi_1({\Omega_2^2})})}\)
- (1[2[4[7[1]]]])=\({\psi_0({\psi_1({\Omega_2^{\omega}})})}\)
- (1[2[4[7[8]]]])=(1[1,2,3,1]₂)=\({\psi_0({\psi_1({\Omega_2^{\Omega}})})}\)
- (1[1,2,3,1,2]₂)=\({\psi_0({\psi_1({\Omega_2^{\psi_1(0)}})})}\)
- (1[1,2,3,4]₂)=(1[2[4[7[11]]]])=\({\psi_0({\psi_1({\Omega_2^{\Omega_2}})})}\)
- (1[1[1,2]₁]₂)=\({\psi_0({\psi_1({\psi_2(0)})})}\)
小変形Y数列[]
- (1,2,5)=(1[1[2]])=(1[1[1]₂]₁)=(1[1[1[1[...]]]])=(1,2,4,8...)=\({\varepsilon_0}\)
- (1,2,5,10)=(1[1[2,2]])=(1[1[2,1[2,1[2...]]]])=\({\varepsilon_1}\)
- (1,2,5,11)=(1[1[2[1]]])=\({\psi_0({\omega})}\)
- (1,2,5,13)=(1[1[2[3]]])=\({\psi_0({\Omega})}\)
- (1,2,5,14)=(1[1[2[4]]])=(1[1[1,2]₂]₁)=\({\psi_0({\psi_1(0)})}\)
- (1,2,5,14,33)=(1[1[2[4,4]]])=\({\psi_0({\psi_1(1)})}\)
- (1,2,5,14,40)=(1[1[2[4[7]]]])=(1[1[1,2,3]₂]₁)=\({\psi_0({\psi_1({\Omega_2})})}\)
- (1,2,5,14,40,112)=(1[1[2[4[7[11]]]]])=(1[1[1,2,3,4]₂]₁)=\({\psi_0({\psi_1({\Omega_2^{\Omega_2}})})}\)
- (1,2,5,14,41)=(1[1[2[4[8]]]])=(1[1[1,2,4]₂]₁)=(1[1[1[1,2]₁]₂]₁)=\({\psi_0({\psi_1({\psi_2(0)})})}\)
変形Y数列[]
- (1,2,4)=(1[1,2])=(1,2,3,4...)=\({\varepsilon_0}\)
- (1,2,4,2)=(|1,2,4|1,2,4|1,2,4|...)=\({\varepsilon_0×{\omega}}\)
- (1,2,4,2,4)=(1,2,4|2,3,4|,2,3,4|...)=\({\varepsilon_0^2}\)
- (1,2,4,3)=\({\varepsilon_0^{\omega}}\)
- (1,2,4,3,5)=\({\varepsilon_0^{\varepsilon_0}}\)
- (1,2,4,4)=(1|2,4|3,5|4,6|...)=\({\varepsilon_1}\)
- (1,2,4,5)=\({\varepsilon_{\omega}}\)
- (1,2,4,5,7)=\({\varepsilon_{\varepsilon_0}}\)
- (1,2,4,6)=\({\psi_0({\Omega})}\)
- (1,2,4,6,4)=\({\psi_0({\Omega+1})}\)
- (1,2,4,6,4,6)=\({\psi_0({\Omega×2})}\)
- (1,2,4,6,5)=\({\psi_0({\Omega×{\omega}})}\)
- (1,2,4,6,6)=\({\psi_0({\Omega^2})}\)
- (1,2,4,6,7)=\({\psi_0({\Omega^{\omega}})}\)
- (1,2,4,6,8)=\({\psi_0({\Omega^{\Omega}})}\)
- (1,2,4,7)=\({\psi_0({\psi_1(0)})}\)
- (1,2,4,7,11...)=\({\psi_0({\Omega_{\omega}})}\)
ここまで-1-HSと同じ
- (1,2,4,8)=(1[1[1,2]])=\({\psi_0({\Omega_{\omega}})}\)
- (1,2,4,8,4)=\({\psi_0({\Omega_{\omega}}+1)}\)
- (1,2,4,8,4,6)=\({\psi_0({\Omega_{\omega}}+{\Omega})}\)
- (1,2,4,8,4,7)=\({\psi_0({\Omega_{\omega}+{\psi_1(0)}})}\)
- (1,2,4,8,4,8)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}\)
- (1,2,4,8,5)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\omega}}})}\)
- (1,2,4,8,6)=\({\psi_0({\Omega_{\omega}}+{\psi_1({\Omega_{\omega}})×{\Omega}})}\)
- (1,2,4,8,6,10)=\({\psi_0({\Omega_{\omega}+psi_1({\Omega_{\omega}})^2})}\)
- (1,2,4,8,7)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+1})}})}\)
- (1,2,4,8,7,9)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega}})}})}\)
- (1,2,4,8,7,10)=(1,2|4,8,7|9,13,12|14,18,17|...)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\Omega_2}})}})}\)
- (1,2,4,8,7,11)=\({\psi_0({\Omega_{\omega}}+{\psi_1({\Omega_{\omega}+{\psi_2(0)}})})}\)
- (1,2,4,8,7,12)=\({\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}+{\psi_2({\Omega_{\omega}})}})}})}\)
- (1,2,4,8,8)=(1,2|4,8|7,12|11,17|...)=\({\psi_0({\Omega_{\omega}×2})}\)=B(0,0,0)(1,1,1)(1,1,1)
他[]
N→Z変換[]
項を0の列に、セパレータを1に変換。
計算例[]
\((3,3,0,2,1)→(0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0)\)
前例(推測)[]
- 巨大数探索スレッド10の>>638
- 巨大数探索スレッド11.75の>>1
S→Z変換[]
セパレータを0に変換。
計算例[]
- \((0,1,2,3,1,2,2)→(0,1,0,2,0,3,0,4,0,2,0,3,0,3)\)
- \((0,0,0)(1,1,1)(2,2,0)(3,1,1)→(0,1,1,1,0,2,2,2,0,3,3,1,0,4,2,2)\)
前例[]
不明
S→Z/N→O変換[]
セパレータを0に、項を1の列に変換。
計算例[]
- \((2,2,1,1,1,0,3)→(1,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,0,1,1,1,1)\)
セパレータを先頭に置くことでS型にすることができる。
前例[]
不明
- \(SpS+SZNO=pS/BW\)
N→B変換[]
\(n→n,n+1\)
計算例[]
\((0,1,2)→(0,1,1,2,2,3)\)
前例[]
- \(LPpS=pS+NB\)
- \(m-DS=pS+NB×(m+2)\)
N→L変換[]
\(n→0,1,2...n\)
計算例[]
\((3,1,2)→(0,1,2,3,0,1,0,1,2)\)
計算例[]
- \(SPpS=SpS+NL\)
- \(PpS=pS+NL\)
階差表記[]
- 初項と階差を使って数列を書き表す。
- 例:(1,2,3,5,6,8,11)=(1[1,1,2,1,2,4])
- 数列システムを作るのに使う場合、0以下の項を含めないほうが便利である(多分)。
- 例:(1,2,4,5,5,7,10)=(1[1,2,1],5[2,3])
- (1[1[1[...]]])の一般項は\(2^n\)
拡張階差表記[]
- \(a_1[a_2,a_3...]_1=a_1[a_2,a_3...]=a_1,a_1+a_2,a_1+a_2+a_3...\)
- \(a_1[a_2,a_3...]_{m+1}=a_1[(a_1+a_2)[(a_1+a_2+a_3)[...]_m]_m]_m\)
- 例:\(1[1,1,1]_3=1[2[3[4]_2]_2]_2=1[2[3[7]_1]_2]_2=1[2[3,10]_2]_2=1[2[5[15]_1]_1]_2=1[2[5,20]_1]_2=\)
- \(1[2,7,27]_2=1[3[10[37]_1]_1]_1=1[3[10,47]_1]_1=1[3,13,60]_1=1,4,17,77\)
- \((1[1]_1)=(1,2)\)
- \((1[1[1]_2]_1)=(1,2,5)\)
- \((1[1[1[1]_3]_2]_1)=(1,2,5,16)\)
- \((1[1[1[1[1]_4]_3]_2]_1)=(1,2,5,16,68)\)
- \((1[1[1[1[1[1]_5]_4]_3]_2]_1)=(1,2,5,16,68,400)?\)
- 一般項は不明
極限[]
\(Max(A)\)を\(A\)の最大の要素とし、\(\text{Row}(A)\)を\(A\)の行数とする。
数極限[]
システム\(X\)の標準形の列\(A\)と\(B\)について\(Max(A)>Max(B)⇒A>B\)が成り立つとき、
\(X\)は数極限である。
行極限[]
システム\(X\)の標準形の行列\(A\)と\(B\)について\(\text{Row}(A)>\text{Row}(B)⇒A>B\)が成り立つとき、
\(X\)は行極限である。
例
数極限のシステム:ベクレミシェフの虫、原始数列
数極限でないシステム:大1次数列、バシク行列
行極限のシステム:バシク行列
小極限[]
システム\(X\)での極限順序数\({\alpha}\)に対応する標準列が\({\Delta}=0\)であるとき、
\(X\)において\({\alpha}\)は小極限である。
例
PS:\((0,0)(1,1)(2,1)(3,0)={\varphi({\omega},0)},Δ=(0,0)⇒\)PSにおいて\({\varphi({\omega},0)}\)は小極限である
大極限[]
システム\(X\)での極限順序数\({\alpha}\)に対応する標準列が\({\Delta}≠0\)であるとき、
\(X\)において\({\alpha}\)は大極限である。
例
PLPS:\((0,0)(1,1)={\varphi({\omega},0)},Δ=(1,0)⇒\)LPPSにおいて\({\varphi({\omega},0)}\)は大極限である
S型[]
\((0,1,2,...n)\)を極限とする数列システムをS型とする。
例:小偽原始数列、原始数列、大偽原始数列、大SZNO数列
W型[]
\((n)\)を極限とする数列システムをW型とする。 例:小1次数列、ベクレミシェフの虫
RN変換[]
行極限の行列から数極限の行列への変換
\((a_1,a_2,...a_k)→(1,...(a_1個)...1)+(1,...(a_2個)...1)+...(1,...(a_k個)...1)\)
\((0)(1)(2)(3)→\begin{pmatrix}0&1&1&1\\0&0&1&1\\0&0&0&1\end{pmatrix}\)
\(\begin{pmatrix}0&1&2&3\\0&1&1&1\end{pmatrix}→\begin{pmatrix}0&2&2&2\\0&0&1&1\\0&0&0&1\end{pmatrix}\)
\(\begin{pmatrix}0&1&2&3\\0&1&2&3\end{pmatrix}→\begin{pmatrix}0&2&2&2\\0&0&2&2\\0&0&0&2\end{pmatrix}\)
\(RN^{-1}=RN?\)