L-階差数列類[]
表記[]
- \(a_0,a_1,...a_k:\)非負整数
- \(n:\)自然数
- \(M:\)L関数
- 正規形\(:(a_0,a_1,...a_k)_{M}[n]=(S)_M[n]\)
定義[]
サブルール[]
- \(c,e,g:\)自然数
- 列の長さ
列\(s\)の長さを\(|s|\)と表記する。
例:\(|0,1,1,2,2,3|=6\)
- 結合
列\(s\)と列\(t\)の結合を\(s\frown t\)と表記する。
例:\(0,1,1,2\frown 2,3=0,1,1,2,2,3\)
- 展開度
列\(s=b_0,b_1,...b_c\)の「展開度」を\(max\{e|∃s'[∃g[s=s'+g×0\frown s'+g×1\frown ...s'+g×e]]\}\)と定義する。
例:\(s=0,1,1,2,2,3,3,4\)
- \(s'=0,1,1,2→s=s'+0×2\frown S'+1×2→e=1\)
- \(s'=0,1→s=s'+0×1\frown s'+1×1\frown s'+2×1\frown s'+3×1→e=3\)
- L関数
L関数は、非負整数\(m\)と再帰順序数\({\alpha}\)を用いて\(L_{\alpha}(m)\)と表記され、列\(S\)に依存した関数である。
- rule1:\(L_0(m)=\)「1以上の展開度を持ち、階差数列が全て-mより大きいようなSの連続部分列の最大長」
- rule2:\(L_{\alpha+1}(m)=L^m_{\alpha}(m)\)
- rule3:\(L_{\alpha}(m)=L_{\alpha[m]}(m):\)
- \(a_l\)
\(M\)の値に対応する列の内、最も左側にある列の初項を\(a_l\)とする。
- \(d_0,d_1,...d_k\)
\(d_0,d_1,...d_k\)を以下の通り定義する。
- rule1:\(d_0=-\infty\)
- rule2:\(d_k=max\{a_k-a_{k-1},-M\}\)
- rule3:\(d_l=min\{a_k-a_{k-1},-M-1\}\)
- rule4:\(d_c=a_c-a_{c-1}\)
- \(\text{ex}(S,b)\)
列\(S\)と自然数\(b\)から列への写像\(\text{ex}(s,n)\)を以下の通り定義する。
- \(r=max\{i|(a_i<a_k)∧(d_i<d_k)\}\)
- \(A=a_0,a_1,...a_{r-1}\)、\(B_0=a_r,a_{r+1},...a_{k-1}\)
- \(B_c=B_0+c×(a_k-a_r-1)\)
- \(\text{ex}(S,n)=A\frown B_0\frown B_1\frown ...B_n\)
計算法[]
- \(\#:\)長さ1以上の列
- rule1:\((0)_M[n]=n+1\)
- rule2:\((\#,0)_M[n]=(\#)_M[n+1]\)
- rule3:\((\#)_M[n]=(\text{ex}(\#,n))_M[n]\)
命名[]
- \(A_1(x)=(0,2)_{L_0(0)}[x]\)
- \(A_2(x)=(0,2)_{L_0(1)}[x]\)
- \(A_3(x)=(0,2)_{L_0(L_0(0))}[x]\)
- \(A_4(x)=(0,2)_{L_{\omega}(x)}[x]\)
- \(A_5(x)=(0,2)_{L_{\varphi({\omega},0)}(x)}[x]\)
- E3:A-01-Hs\(=A^{108}_1(108)\)
- E3:A-02-Hs\(=A^{108}_2(108)\)
- E3:A-03-Hs\(=A^{108}_3(108)\)
- E3:A-04-Hs\(=A^{108}_4(108)\)
- E3:A-05-Hs\(=A^{108}_5(108)\)
計算例[]
- \((0,1,2,1,2,2,3,3,4,0,1,1,2,2,3,2)_{L_0(1)}[2]\)
- \(L_0(1)=6\)
- \(l=3\)
- \(d=-\infty,1,1,-7,1,0,1,0,1,-4,1,0,1,0,1,-1\)
- \(r=9\)
- \(A=0,1,2,1,2,2,3,3,4\)、\(B_0=0,1,1,2,2,3\)
- \(a_k-a_r-1=1\)
- \((0,1,2,1,2,2,3,3,4,0,1,1,2,2,3,2)_{L_0(1)}[2]\)
- \(=(0,1,2,1,2,2,3,3,4,0,1,1,2,2,3,1,2,2,3,3,4,2,3,3,4,4,5)_{L_0(1)}[2]\)
評価[]
- \(S_0=0\)
- \(S_{n+1}=S_n,S_n+1\)
- \(L_0(0)\)
- \((0,1,2)=(|0,1|1,2|2,3|...)\)
- \((0,1,1,2,2)=(|0,1,1,2|1,2,2,3|2,3,3,4|...)\)
- \((0,1,1,2,1,2,2,3,2)=(|0,1,1,2,1,2,2,3|1,2,2,3,2,3,3,4|2,3,3,4,3,4,4,5|...)\)
- \((0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,2)=(S_4,2)=(|S_4|S_4+1|S_4+2|...)\)
- \((S_5,2)=(S_4|S_4+1|S_4+1|S_4+1|...)\)
- \((S_4,2)={\varepsilon_0}\)
- \((S_4,2,S_4,2)=(|S_4,2,S_4|S_4+1,3,S_4+1|S_4+2,4,S_4+2|...)={\varepsilon_1}\)
- \((S_4,2,1)={\psi_0({\omega})}\)
- \((S_4,2,1,0,1,1,2,S_4,2)={\psi_0({\omega+1})}\)
- \((S_4,2,1,0,1,1,2,S_4,2,1)={\psi_0({\omega×2})}\)
- \((S_4,2,1,0,1,1,2,1)={\psi_0({\omega^2})}\)
- \((S_4,2,1,S_4,2)={\psi_0({\Omega})}\)
- \((S_4,2,1,S_4,2,S_4,2,1,S_4,2)={\psi_0({\Omega×2})}\)
- \((S_4,2,1,S_4,2,1)={\psi_0({\Omega×{\omega}})}\)
- \((S_4,2,1,S_4,2,1,0,1,1,2,S_4,2,1,S_4,2)={\psi_0({\Omega×{\omega+1}})}\)
- \((S_4,2,1,S_4,2,1,S_4,2)={\psi_0({\Omega^2})}\)
- \((S_4,2,1,1)={\psi_0({\Omega^{\omega}})}\)
- \((S_4,2,1,1,0,1,1,2,S_4,2,1,1)={\psi_0({\Omega^{\omega}×2})}\)
- \((S_4,2,1,1,0,1,1,2,1)={\psi_0({\Omega^{\omega}×{\omega}})}\)
- \((S_4,2,1,1,0,1,1,2,1,0,1,1,2,1)={\psi_0({\Omega^{\omega}×{\omega^2}})}\)
- \((S_4,2,1,1,S_4,2)={\psi_0({\Omega^{\omega+1}})}\)
- \((S_4,2,1,1,S_4,2,1)={\psi_0({\Omega^{\omega+1}×{\omega}})}\)
- \((S_4,2,1,1,S_4,2,1,S_4,2)={\psi_0({\Omega^{\omega+2}})}\)
- \((S_4,2,1,1,1)={\psi_0({\Omega^{\omega^2}})}\)
- \((S_4,2,1,2)={\psi_0({\Omega^{\omega^{\omega}}})}\)
- \((S_4,2,S_3+1,2)={\psi_0({\Omega^{\Omega}})}\)
- \((S_4,2,S_3+1,2,1)={\psi_0({\Omega^{\Omega}×{\omega}})}\)
- \((S_4,2,S_3+1,2,1,S_4,2)={\psi_0({\Omega^{\Omega+1}})}\)
- \((S_4,2,S_3+1,2,1,1)={\psi_0({\Omega^{\Omega×{\omega}}})}\)
- \((S_4,2,S_3+1,2,S_3,2)={\psi_0({\Omega^{\Omega^2}})}\)
- \((S_4,2,2)={\psi_0({\Omega^{\Omega^{\omega}}})}\)
- \((S_4,S_3+2,3)=(S_3,S_3+1,S_3+2,3)={\psi_0({\Omega^{\Omega^{\Omega}}})}\)
- \((S_3,2)={\psi_0({\psi_1(0)})}\)
- \((S_3,2,1)={\psi_0({\psi_1(0)×{\omega}})}\)
- \((S_3,2,2)=(S_2|S_2+1,2|S_2+1,2|S_2+1,2|...)\)
- \((S_3,2,1,0,1,1,2,S_3,2)={\psi_0({\psi_1(0)×({\omega+1})})}\)
- \((S_3,2,1,0,1,1,2,1)={\psi_0({\psi_1(0)×{\omega^2}})}\)
- \((S_3,2,1,S_4,2)={\psi_0({\psi_1(0)×{\Omega}})}\)
- \((S_3,2,1,S_3,2)=(|S_3,2,1,S_3|S_3+1,3,2,S_3+1|S_3+2,4,3,S_3+2|...)\)
- \((S_3,2,1,S_3,S_3+1,3)=(S_3,2,1,S_3|S_3+1|S_3+2|S_3+3|...)\)
- \((S_3,2,1,S_4,2,1,S_4,2)={\psi_0({\psi_1(0)×{\Omega^2}})}\)
- \((S_3,2,1,S_4,2,1,1)={\psi_0({\psi_1(0)×{\Omega^{\omega}}})}\)
- \((S_3,2,1,S_4,2,S_3+1,2)={\psi_0({\psi_1(0)×{\Omega^{\Omega}}})}\)
- \((S_3,2,1,S_3,S_3+1,3)={\psi_0({\psi_1(0)^2})}\)
- \((S_3,2,1,S_3,2)={\psi_0({\psi_1(1)})}\)
- \((S_3,2,1,1)={\psi_0({\psi_1({\omega})})}\)
- \((S_3,2,1,1,S_3,2,1,1)={\psi_0({\psi_1({\omega^2})})}\)
- \((S_3,2,1,2)={\psi_0({\psi_1({\omega^{\omega}})})}\)
- \((S_3,2,2)=(S_2|S_2+1,2|S_2+1,2|S_2+1|...)\)
- \((S_3,2,S_2+1,2)=(|S_3,2,S_2+1|S_3+1,3,S_2+2|S_3+2,4,S_2+3|...)\)
- \((S_3,2,S_2+1,S_3+1,3)=(S_3,2,S_2+1|S_3+1|S_3+2|S_3+3|...)\)
- \((S_3,2,S_2+1,S_4+1,2)={\psi_0({\psi_1({\Omega})})}\)
- \((S_3,2,S_2+1,S_3+1,3)={\psi_0({\psi_1({\psi_1(0)})})}\)
- \((S_3,2,S_2+1,2)={\psi_0({\psi_1({\Omega_2})})}\)
- \((S_3,2,2)={\psi_0({\psi_1({\Omega_2^{\omega}})})}\)
- \((S_2,S_2+1,S_2+2,3)={\psi_0({\psi_1({\Omega_2^{\Omega_2}})})}\)
- \((S_2,2)=(0,1,1,2,2)={\psi_0({\psi_1({\psi_2(0)})})}\)
- \((S_2,2,1)={\psi_0({\psi_1({\psi_2(0)})}×{\omega})}\)
- \((S_2,2,1,S_2,2)={\psi_0({\psi_1({\psi_2(0)})}×({\omega+1}))}\)
- \((S_2,2,2)=(|S_2,2|S_2+1,3|S_2+2,4|...)\)
- \((S_2,2,S_2+1,3)=(S_2,2|S_2+1|S_2+2|S_2+3|...)\)
- \((S_2,2,S_4+1,3)={\psi_0({\psi_1({\psi_2(0)})}×{\Omega})}\)
- \((S_2,2,S_3+1,3)={\psi_0({\psi_1({\psi_2(0)}+1)})}\)
- \((S_2,2,S_2+1,3)={\psi_0({\psi_1({\psi_2(0)×2})})}\)
- \((S_2,2,2)={\psi_0({\psi_1({\psi_2(1)})})}\)
- \((S_2,2,3)={\psi_0({\psi_1({\psi_2({\omega})})})}\)
- \((S_2,2,3,3)=(|S_2,2,3|S_2+2,4,5|S_2+4,6,7|...)\)
- \((S_2,2,3,S_4+2,4)={\psi_0({\psi_1({\psi_2({\Omega})})})}\)
- \((S_2,2,3,S_3+2,4)={\psi_0({\psi_1({\psi_2({\Omega_2})})})}\)
- \((S_2,2,3,S_2+2,4)={\psi_0({\psi_1({\psi_2({\psi_2(0)})})})}\)
- \((0,1,1,2,2,3,3)={\psi_0({\psi_1({\psi_2({\Omega_3})})})}\)
- \((0,1,2)={\psi_0({\psi_1({\psi_2({\Omega_3^{\omega}})})})}\)
- \((0,1,2,S_3,S_5,2)={\psi_0({\psi_1({\psi_2({\Omega_3^{\omega}})})}+1)}\)
- \((0,1,2,S_3,S_5,2,S_3,1)={\psi_0({\psi_1({\psi_2({\Omega_3^{\omega}})})}+{\omega})}\)
- \((0,1,2,S_3,S_5,2,S_3,1,S_3,S_5,2)={\psi_0({\psi_1({\psi_2({\Omega_3^{\omega}})})}+{\omega+1})}\)
- \((0,1,2,S_3,S_5,2,S_3,1,S_3,1)={\psi_0({\psi_1({\psi_2({\Omega_3^{\omega}})})}+{\omega^2})}\)
- \((0,1,2,S_3,S_5,2,S_3,1,1)={\psi_0({\psi_1({\psi_2({\Omega_3^{\omega}})})}+{\omega^{\omega}})}\)
- \((0,1,2,S_3,S_5,2,S_3,S_5+1,3)={\psi_0({\psi_1({\psi_2({\Omega_3^{\omega}})})}+{\Omega})}\)
- \((0,2)={\psi_0({\Omega_{\omega}})}\)
- \(L_0(1)\)
- \((S_6,2)={\varepsilon_0}\)
- \((S_6,2,S_4,S_6,2)={\varepsilon_1}\)
- \((S_6,2,S_4,1)={\psi_0({\omega})}\)
- \((S_6,2,S_6,2)=(|S_6,2,S_6|S_6+1,3,S_6+1|S_6+2,4,S_6+2|...)\)
- \((S_6,2,S_4,1,S_4,S_6,2)={\psi_0({\omega+1})}\)
- \((S_6,2,S_4,1,S_4,1)={\psi_0({\omega^2})}\)
- \((S_6,2,S_4,1,1)={\psi_0({\omega^{\omega}})}\)
- \((S_6,2,S_6,2)={\psi_0({\Omega})}\)
- \((S_6,2,S_6,2,S_4,S_6,2,S_6,2)={\psi_0({\Omega×2})}\)
- \((S_6,2,S_6,2,S_6,2)={\psi_0({\Omega^2})}\)
- \((S_6,2,1)={\psi_0({\Omega^{\omega}})}\)
- \((0,1,2)={\psi_0({\Omega_{\omega}})}\)
- \((0,1,2,1)={\psi_0}({\Omega_{\omega}})×{\omega}\)
- \((0,1,2,1,2,2,3)={\psi_0({\Omega_{\omega}})×{\omega^{\omega^{\omega}}}}\)
- \((0,1,2,1,2,2,3,0,1,2,S_3,1)={\psi_0({\Omega_{\omega}})}×({\omega^{\omega^{\omega}}+1})\)
\(L_{\Omega}-\)階差数列システム[]
表記[]
L-階差数列類を参照。
定義[]
サブルール[]
- L関数
順序数の代わりに数列を使う。
- rule0-0:\((0)_M=1\)
- rule0-1:\((\#,0)_M=(\#)_M+1\)
- rule0-2:\((\#)_M[n]=(\text{ex}(\#,n))_M\)
計算法[]
L-階差数列類を参照。
命名[]
- \(f(x)=(0,2)_{L_x(x)}\)
- \(A_6(x)=(0,2)_{L_{f^x(x)}(x)}[x]\)
- E3:A-06-Hs\(=A^{108}_6(108)\)
大偽行列システム[]
表記[]
- \(k,m,n:\)自然数
- \(a_{x,y}:\)非負整数
- \(S_x=(a_{x,0},a_{x,1},...a_{x,m})\)
- 正規形\(:S_0,S_1,...S_k[n]\)
定義[]
計算法[]
- \(Z:\)零ベクトル
- \(b,c,e,x,y:\)非負整数
- rule1:\(Z[n]=n+1\)
- rule2:\(S_0S_1...S_{k-1}Z[n]=S_0S_1...S_{k-1}[n+1]\)
- rule3:
- \(dim(x)=max\{b|a_{x,b}>0\}\)
- \(p_0(x)=max\{b|(a_{b,0}+1=a_{x,0})∧(b<x)\}\)
- \(p_{y+1}(x)=max\{b|(a_{b,y+1}+1=a_{x,y+1})∧(b<x)∧(∃c[p_y^c(x)=b])\}\)
- \(r=max\{b|(∀y,y≤dim(k)[∃c[p_y^c(k)=b]])∧\)
- \(((p_{dim(k)}(b)≠b-1)∨(∃e[(e>dim(k))∧(p_e(b)≠b-1)∧(a_{b,e}>0)]))\}\)
- \({\Delta}=D_0D_1...D_{k-1-r}\)
- \(D_x=(d_{x,0},d_{x,1},...d_{x,m})\)
- \(d_{0,y}=\begin{cases}a_{k,y}-a_{r,y}&\text{if} y<dim(k)\\a_{k,y}-a_{r,y}-1&\text{if} y=dim(k)\\0&\text{otherwise}\end{cases}\)
- \(d_{x+1,y}=\begin{cases}d_{0,y}&\text{if} ∃b[p_y^b(r+x+1)=r]\\0&\text{otherwise}\end{cases}\)
- \(A=S_0S_1...S_{r-1}\)
- \(B_0=S_rS_{r+1}...S_{k-1}\)
- \(B_b=B_0+b×{\Delta}\)
- \(S_0S_1...S_k[n]=AB_0B_1...B_n[n]\)
命名[]
- \(B_1(x)=(0,0,0)(1,1,1)[x]\)
- \(B_2(x)=(\underbrace{0,0,...0}_x)(\underbrace{1,1,...1}_x)[x]\)
- E3:B-01-Hs\(=B_1^{108}(108)\)
- E3:B-02-Hs\(=B_2^{108}(108)\)
計算例[]
- \((0,0,0,0)(1,1,1,1)(2,2,2,1)(3,3,3,0)(4,4,4,0)(5,0,0,0)(4,4,4,0)[1]\)
- \(dim(6)=2\)
- \(p_0(6)=3,p_0^2(6)=2,p_0^3(6)=1,p_0^4(6)=0\)
- \(p_1(6)=3,p_1^2(6)=2,p_1^3(6)=1,p_1^4(6)=0\)
- \(p_2(6)=3,p_2^2(6)=2,p_2^3(6)=1,p_2^4(6)=0\)
- \(r=2 (e=3)\)
- \(D_0=(2,2,1,0)\)
- \({\Delta}=(2,2,1,0)(2,2,1,0)(2,2,1,0)(2,0,0,0)\)
- \(A=(0,0,0,0)(1,1,1,1)\)
- \(B_0=(2,2,2,1)(3,3,3,0)(4,4,4,0)(5,0,0,0)\)
- \(B_1=(4,4,3,1)(5,5,4,0)(6,6,5,0)(7,0,0,0)\)
- \((0,0,0,0)(1,1,1,1)(2,2,2,1)(3,3,3,0)(4,4,4,0)(5,0,0,0)(4,4,4,0)[1]\)
- \(=(0,0,0,0)(1,1,1,1)(2,2,2,1)(3,3,3,0)(4,4,4,0)(5,0,0,0)(4,4,3,1)(5,5,4,0)(6,6,5,0)(7,0,0,0)[1]\)
評価[]
- \((0,0)(1,1)=|(0,0)|(1,0)|(2,0)|...={\psi_0({\Omega^{\omega}})}\)
- \((0,0)(1,1)(2,0)=|(0,0)(1,1)|(1,0)(2,1)|(2,0)(3,1)|...={\psi_0({\Omega^{\omega}+1})}\)
- \((0,0)(1,1)(2,0)(3,0)={\psi_0({\Omega^{\omega}+{\Omega}})}\)
- \((0,0)(1,1)(2,0)(3,1)=(0,0)(1,1)|(2,0)|(3,0)|(4,0)|...={\psi_0({\Omega^{\omega}×2})}\)
- \((0,0)(1,1)(2,0)(3,1)(4,0)(5,1)={\psi_0({\Omega^{\omega}×3})}\)
- \((0,0)(1,1)(2,1)=|(0,0)(1,1)|(2,0)(3,1)|(4,0)(5,1)|...={\psi_0({\Omega^{\omega}×{\omega}})}\)
- \((0,0)(1,1)(2,1)(3,0)=(0,0)(1,1)|(2,1)|(2,1)|(2,1)|...\)
- \((0,0)(1,1)(2,1)(2,1)=|(0,0)(1,1)(2,1)|(2,0)(3,1)(4,1)|(4,0)(5,1)(6,1)|...\)
- \((0,0)(1,1)(2,1)(2,0)(3,1)(4,1)={\psi_0({\Omega^{\omega}×{\omega}+{\psi_0({\Omega^{\omega}×{\omega}})}})}\)
- \((0,0)(1,1)(2,1)(2,1)={\psi_0({\Omega^{\omega}×{\omega}+{\Omega}})}\)
- \((0,0)(1,1)(2,1)(3,0)={\psi_0({\Omega^{\omega}×{\omega}+{\Omega×{\omega}}})}\)
- \((0,0)(1,1)(2,1)(3,0)(3,1)={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^2}})}\)
- \((0,0)(1,1)(2,1)(3,0)(3,1)(2,1)(3,0)(3,1)={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^2×2}})}\)
- \((0,0)(1,1)(2,1)(3,0)(3,1)(3,1)={\psi_0({\Omega^{\omega}×{\omega}+{\Omega^3}})}\)
- \((0,0)(1,1)(2,1)(3,0)(3,1)(4,0)={\psi_0({\Omega^{\omega}×({\omega+1})})}\)
- \((0,0)(1,1)(2,1)(3,0)(3,1)(4,0)(3,1)={\psi_0({\Omega^{\omega+1}})}\)
- \((0,0)(1,1)(2,1)(3,0)(3,1)(4,0)(4,1)={\psi_0({\Omega^{\Omega}})}\)
- \((0,0)(1,1)(2,1)(3,0)(3,1)(4,0)(4,1)(5,0)(5,1)={\psi_0({\Omega^{\Omega^{\Omega}}})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)=(0,0)(1,1)|(2,1)(3,0)|(3,1)(4,0)|(4,1)(5,0)|...={\psi_0({\psi_1(0)})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(4,0)=(0,0)(1,1)|(2,1)(3,0)(4,0)|(3,1)(4,0)(5,0)|(4,1)(5,0)(6,0)|...\)
- \(={\psi_0({\psi_1(1)})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(4,0)(5,0)={\psi_0({\psi_1({\omega})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(4,1)=(0,0)(1,1)(2,1)|(3,0)(4,0)|(4,0)(5,0)|(5,0)(6,0)|...\)
- \(={\psi_0({\psi_1({\varepsilon_0})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)=(0,0)(1,1)|(2,1)(3,0)(4,0)|(4,1)(5,0)(6,0)|(6,1)(7,0)(8,0)|...\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(4,1)(4,1)={\psi_0({\psi_1({\varepsilon_1})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(4,1)(5,0)(5,1)={\psi_0({\psi_1({\psi_0({\Omega})})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(4,1)(5,0)(6,0)={\psi_0({\psi_1({\psi_0({\psi_1(0)})})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)={\psi_0({\psi_1({\Omega})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(2,1)(3,0)(4,0)(5,0)={\psi_0({\psi_1({\Omega})}+{\psi_1({\psi_0({\psi_1({\Omega})})})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(3,0)={\psi_0({\psi_1({\Omega})}+{\psi_1({\psi_0({\psi_1({\Omega})})})}×{\omega})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(4,0)={\psi_0({\psi_1({\Omega})}+{\psi_1({\psi_0({\psi_1({\Omega})})}+1)})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(4,1)(5,0)(6,0)(7,0)={\psi_0({\psi_1({\Omega})}+{\psi_1({\psi_0({\psi_1({\Omega})×2})})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(5,0)={\psi_0({\psi_1({\Omega})×2})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(5,1)={\psi_0({\psi_1({\Omega})}×{\varepsilon_0})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,0)(5,0)(6,0)={\psi_0({\psi_1({\Omega})×{\Omega}})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,1)={\psi_0({\psi_1({\Omega})×{\Omega^{\omega}}})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,1)(2,1)(3,0)(4,1)={\psi_0({\psi_1({\Omega})×{\Omega^{\omega}}}+{\psi_1({\psi_0({\psi_1({\Omega})×{\Omega^{\omega}}})})})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,1)(4,0)={\psi_0({\psi_1({\Omega})×{\Omega^{\omega}}}+{\psi_1({\psi_0({\psi_1({\Omega})×{\Omega^{\omega}}})}+1)})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,1)(5,0)={\psi_0({\psi_1({\Omega})}×({\Omega^{\omega}+1}))}\)
- \((0,0)(1,1)(2,1)(3,0)(4,1)(5,0)(6,1)={\psi_0({\psi_1({\Omega})}×{\Omega^{\omega}×2})}\)
- \((0,0)(1,1)(2,1)(3,0)(4,1)(5,1)={\psi_0({\psi_1({\Omega})}×{\Omega^{\omega}}×{\omega})}\)
- \(\)
以下、めっちゃ雑な予想↓
- \((0,0)(1,1)(2,2)=|(0,0)(1,1)|(2,1)(3,2)|(4,2)(5,3)|...={\psi_0({\Omega_{\omega}})}=B(0,0,0)(1,1,1)\)
- \((0,0)(1,1)(2,2)(2,0)={\psi_0({\Omega_{\omega}+1})}=B(0,0,0)(1,1,1)(1,1,0)\)
- \((0,0)(1,1)(2,2)(3,0)={\psi_0({\Omega_{\omega}+{\Omega}})}=B(0,0,0)(1,1,1)(1,1,0)(2,1,0)\)
- \((0,0)(1,1)(2,2)(3,0)(4,1)={\psi_0({\Omega_{\omega}+{\Omega^{\omega}}})}=B(0,0,0)(1,1,1)(1,1,0)(2,1,0)(3,0,0)\)
- \((0,0)(1,1)(2,2)(3,0)(4,1)(5,2)={\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})}})}=B(0,0,0)(1,1,1)(1,1,0)(2,2,1)\)
- \((0,0)(1,1)(2,2)(3,1)={\psi_0({\Omega_{\omega}+{\psi_1({\Omega_{\omega}})×{\omega}}})}\)
- \((0,0)(1,1)(2,2)(3,1)(3,0)={\psi_0({\Omega_{\omega}}+{\psi_1({\Omega_{\omega}})}+{\Omega})}\)
- \((0,0)(1,1)(2,2)(3,1)(3,1)={\psi_0({\Omega_{\omega}}+{\psi_1({\Omega_{\omega}})}+{\Omega^2})}\)
- \((0,0)(1,1)(2,2)(3,1)(4,0)(5,0)={\psi_0({\Omega_{\omega}}+{\psi_1({\Omega_{\omega}})}+{\psi_1(0)})}\)
- \((0,0)(1,1)(2,2)(3,2)={\psi_0({\Omega_{\omega}×2})}=B(0,0,0)(1,1,1)(1,1,1)\)
- \((0,0)(1,1)(2,2)(3,2)(3,2)={\psi_0({\Omega_{\omega}×3})}=B(0,0,0)(1,1,1)(1,1,1)(1,1,1)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)={\psi_0({\Omega_{\omega}×{\omega}})}=B(0,0,0)(1,1,1)(2,0,0)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(3,2)={\psi_0({\Omega_{\omega}×({\omega+1})})}\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(4,1)={\psi_0({\Omega_{\omega}×{\Omega}})}=B(0,0,0)(1,1,1)(2,1,0)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(4,1)(3,2)={\psi_0({\Omega_{\omega}^2})}=B(0,0,0)(1,1,1)(2,1,0)(1,1,1)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(4,2)=B(0,0,0)(1,1,1)(2,1,1)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(4,2)(5,0)(5,2)=B(0,0,0)(1,1,1)(2,1,1)(3,1,1)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(5,0)=B(0,0,0)(1,1,1)(2,2,0)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(5,0)=B(0,0,0)(1,1,1)(2,2,0)(2,2,0)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(5,2)=B(0,0,0)(1,1,1)(2,2,0)(3,1,1)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(5,0)(6,0)=B(0,0,0)(1,1,1)(2,2,0)(3,2,0)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(5,1)=B(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,0,0)\)
- \((0,0)(1,1)(2,2)(3,2)(4,0)(5,1)(6,1)=B(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,0,0)(5,0,0)\)
- \((0,0)(1,1)(2,2)(3,2)(4,1)(5,2)(6,3)=B(0,0,0)(1,1,1)(2,2,0)(3,2,1)\)
- \((0,0)(1,1)(2,2)(3,2)(4,2)=B(0,0,0)(1,1,1)(2,2,1)\)
- \((0,0)(1,1)(2,2)(3,2)(4,3)=B(0,0,0)(1,1,1)(2,2,1)(3,0,0)\)