BMの名前の決定。
(0)(1,1,1)(2,1,0)(1,1,1) 超原始列 (0)(1,1,1)(2,1,0)(1,1,1)(1,1,1) 2-超原始列 (0)(1,1,1)(2,1,0)(1,1,1)(1,1,1)(1,1,1) 3-超原始列 (0)(1,1,1)(2,1)(1,1,1)(2) 大超原始列=ω-超原始列 (0)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1) 超超原始列 (0)(1,1,1)(2,1)(2) 二重超原始列
(0)(1,1,1)(2,1)(2,1)(1,1,1) 超二重超原始列 (0)(1,1,1)(2,1)(3) 多重原始列 (0)(1,1,1)(2,1)(3)(1,1,1) 超多重原始列
超多重原始列数 (0)(1,1,1)(2,1)(3)(1,1,1)[10^100] ゼータ行列数 (0,0,0)(1,1,1)(2,1,1)(3,0,0)(1,0,0)[3] メタ行列数 (0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)(1,0,0)[3] ガンマ行列数 (0,0,0)(1,1,1)(2,1,1)(3,1,1)(1,0,0)[3] マルチ行列数 (0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,0,0)(1,0,0)[3] サブ行列数 (0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(2,0,0)(1,0,0)[3] バシク数 (0,0,0)(1,1,1)(2,2,0)(1,0,0)[3] メタバシク数(0,0,0)(1,1,1)(2,2,1)(3,2,0)(1,0,0)[3] バシクトリ数列数 (0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,2,0)(1,0,0)[3] オメガバシク数 (0,0,0)(1,1,1)(2,2,2)(1,0,0)[3] 大バシク数 (0,0,0)(1,1,1)(2,2,2)(3,2,0)(1,0,0)[3] トリオ数列数 (0,0,0,0)(1,1,1,1)(1,0,0,0)[3]
(0,0,0)(1,1,1)(2,2,2)以下の名前については次のようにします。 ファーストバックギア順序数(first back gear ordinal) (0,0,0)(1,1,1)(2,2,0) セカンドバックギア順序数(second back gear ordinal) (0,0,0)(1,1,1)(2,2,1)(3,3,0) オメガバック順序数(omega back ordinal) (0,0,0)(1,1,1)(2,2,2)
仮解析 https://docs.google.com/spreadsheets/d/1daQ_dRCiLv9MMPq72rcTiXLDj4dwHSn35p5ZNO6W4lc/edit#gid=0
分析[]
\begin{array}{ll} (0)&=&\\ 1\\ \\ (0)(0)&=&\\ 2\\ \\ (0)(1)&=&\\ \omega\\ \\ (0)(1)(0)(1)&=&\\ \omega+\omega\\ \\ (0)(1)(1)&=&\\ \omega^2\\ \\ (0)(1)(2)&=&\\ \omega^\omega\\ \\ (0,0)(1,1)&=&\\ \epsilon_0\\ \\ (0,0)(1,1)(1,0)&=&\\ \epsilon_0\cdot\omega\\ \\ (0,0)(1,1)(1,0)(2,1)&=&\\ \epsilon_0^2\\ \\ (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)&=&\\ \epsilon_0^{\epsilon_0}\\ \\ (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)&=&\\ \epsilon_0^{\epsilon_0\cdot \omega}\\ \\ (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(2,0)(3,1)&=&\\ \epsilon_0^{\epsilon_0^2}\\ \\ (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)&=&\\ \epsilon_0^{\epsilon_0^\omega}\\ \\ (0,0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)&=&\\ \epsilon_0^{\epsilon_0^{\epsilon_0}}\\ \\ (0,0)(1,1)(1,1)&=&\\ \epsilon_1\\ \\ (0,0)(1,1)(1,1)(1,1)&=&\\ \epsilon_2\\ \\ (0,0)(1,1)(2,0)&=&\\ \epsilon_\omega\\ \\ (0,0)(1,1)(2,0)(3,1)&=&\\ \epsilon_{\epsilon_0}\\ \\ (0,0)(1,1)(2,1)&=&\\ \zeta_0\\ \\ (0,0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)&=&\\ \epsilon_{\zeta_0\cdot 2}\\ \\ (0,0)(1,1)(2,1)(1,1)(2,1)&=&\\ \zeta_1\\ \\ (0,0)(1,1)(2,1)(2,0)&=&\\ \zeta_\omega\\ \\ (0,0)(1,1)(2,1)(2,1)&=&\\ \phi_3(0)\\ \\ (0,0)(1,1)(2,1)(3,0)&=&\\ \phi_\omega(0)\\ \\ (0,0)(1,1)(2,1)(3,1)&=&\\ \Gamma_0\\ \\ (0,0)(1,1)(2,1)(3,1)(2,0)&=&\\ \psi_\Omega(\Omega^\Omega\cdot \omega)\\ \\ (0,0)(1,1)(2,1)(3,1)(2,1)&=&\\ \psi_\Omega(\Omega^{\Omega+1})\\ \\ (0,0)(1,1)(2,1)(3,1)(2,1)(3,1)&=&\\ \psi_\Omega(\Omega^{\Omega\cdot 2})\\ \\ (0,0)(1,1)(2,1)(3,1)(3,1)&=&\\ \psi_\Omega(\Omega^{\Omega^2})\\ \\ (0,0)(1,1)(2,1)(3,1)(4,1)&=&\\ \psi_\Omega(\Omega^{\Omega^\Omega})\\ \\ (0,0)(1,1)(2,2)&=&\\ \psi_\Omega(\epsilon_{\Omega+1})\\ \\ (0,0)(1,1)(2,2)(2,2)&=&\\ \psi_\Omega(\epsilon_{\Omega+2})\\ \\ (0,0)(1,1)(2,2)(3,2)&=&\\ \psi_\Omega(\zeta_{\Omega+1})\\ \\ (0,0)(1,1)(2,2)(3,3)&=&\\ \psi_\Omega(\psi_{\Omega_2}(\epsilon_{\Omega_2+1}))\\ \\ (0,0)(1,1)(2,2)(3,3)(4,3)&=&\\ \psi_\Omega(\psi_{\Omega_2}(\zeta_{\Omega_2+1}))\\ \\ (0,0,0)(1,1,1)&=&\\ \psi_\Omega(\psi_{\Omega_\omega}(0))\\ \\ (0,0,0)(1,1,1)(1,1,1)&=&\\ \psi_\Omega(\psi_{\Omega_\omega}(1))\\ \\ (0,0,0)(1,1,1)(2,0,0)&=&\\ \psi_\Omega(\psi_{\Omega_\omega}(\omega))\\ \\ (0,0,0)(1,1,1)(2,1,0)&=&\\ \psi_\Omega(\psi_{\Omega_\omega}(\Omega))\\ \\ (0,0,0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)&=&\\ \psi_\Omega(\psi_{\Omega_\omega}(\Omega)+\psi_{\Omega_2}(\psi_{\Omega_\omega}(\Omega_2)))\\ \\ (0,0,0)(1,1,1)(2,1,0)(1,1,1)&=&\\ \psi_\Omega(\psi_{\Omega_\omega}(\psi_{\Omega_\omega}(0)))\\ \\ (0,0,0)(1,1,1)(2,1,0)(3,0,0)&=&\\ \psi_\Omega(\psi_{\Omega_\omega}(\Omega_\omega))\\ \\ (0,0,0)(1,1,1)(2,1,0)(3,2,0)&=&\\ \psi_\Omega(\psi_I(0))\\ \\ (0,0,0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)&=&\\ \psi_\Omega(\psi_{\Omega_{\psi_I(0)+1}}(\Omega_{\psi_I(0)+1}))\\ \\ (0,0,0)(1,1,1)(2,1,1)&=&\\ \psi_\Omega(\psi_I(\omega))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,0,0)&=&\\ \psi_\Omega(\psi_{\chi(\omega,1)}(0))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,0)&=&\\ \psi_\Omega(\psi_{\chi(\Omega,1)}(0))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)&=&\\ \psi_\Omega(\psi_M(0))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,1,1)&=&\\ \psi_\Omega(\psi_M(\omega))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,0)(3,0,0)&=&\\ \psi_\Omega(\psi_M(M))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)&=&\\ \psi_\Omega(\psi_M(\psi_{M_2}(0)))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,0)\\ (6,3,0)&=&\\ \psi_\Omega(\psi_M(\psi_{K(1,1)}(0)))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,1)(5,2,1)\\ (6,2,0)(5,0,0)&=&\\ \psi_\Omega(\psi_M(\psi_{M_{K+1}}(0)))\\ \\ (0,0,0)(1,1,1)(2,1,1)(3,1,1)&=&\\ \psi_\Omega(\psi_{K_\omega}(0))\\ \\ \end{array}
バシク崩壊配列の解析[]
\begin{array}{ll} (0)&=&\\ \Phi(0)&=&\\ 1\\ \\ (0)(0)&=&\\ \Phi(0)+\Phi(0)&=&\\ 2\\ \\ (0)(0)(0)&=&\\ \Phi(0)+\Phi_0(0)+\Phi(0)&=&\\ 3\\ \\ (0)(1)&=&\\ \Phi(1)&=&\\ \omega\\ \\ (0)(1)(0)&=&\\ \Phi(1)+\Phi(0)\\ \\ (0)(1)(0)(1)&=&\\ \Phi(1)+\Phi(1)\\ \\ (0)(1)(1)&=&\\ \Phi(2)\\ \\ (0)(1)(1)(1)&=&\\ \Phi(3)\\ \\ (0)(1)(2)&=&\\ \Phi(\Phi(1))\\ \\ (0)(1)(2)(0)&=&\\ \Phi(\Phi(1))+\Phi(0)\\ \\ (0)(1)(2)(0)(1)&=&\\ \Phi(\Phi(1))+\Phi(1)\\ \\ (0)(1)(2)(0)(1)(2)&=&\\ \Phi(\Phi(1))+\Phi(\Phi(1))\\ \\ (0)(1)(2)(1)&=&\\ \Phi(\Phi(1)+\Phi(0))\\ \\ (0)(1)(2)(1)(1)&=&\\ \Phi(\Phi(1)+\Phi(0)+\Phi(0))\\ \\ (0)(1)(2)(1)(2)&=&\\ \Phi(\Phi(1)+\Phi(1))\\ \\ (0)(1)(2)(2)&=&\\ \Phi(\Phi(2))\\ \\ (0)(1)(2)(3)&=&\\ \Phi(\Phi(\Phi(1)))\\ \\ (0)(1)(2)(3)(4)&=&\\ \Phi(\Phi(\Phi(\Phi(1))))\\ \\ (0,0)(1,1)&=&\\ \Phi(1,0)\\ \\ (0,0)(1,1)(1,0)&=&\\ \Phi(\Phi(1,0))\\ \\ (0,0)(1,1)(1,0)(2,1)(2,0)&=&\\ \Phi(\Phi(\Phi(1,0)))\\ \\ (0,0)(1,1)(1,1)&=&\\ \Phi(1,1)\\ \\ (0,0)(1,1)(1,1)(1,1)&=&\\ \Phi(1,2)\\ \\ (0,0)(1,1)(2,0)&=&\\ \Phi(1,\omega)\\ \\ (0,0)(1,1)(2,0)(3,1)&=&\\ \Phi(1,\Phi(1,0))\\ \\ (0,0)(1,1)(2,1)&=&\\ \Phi(2,0)\\ \\ (0,0)(1,1)(2,1)(1,1)&=&\\ \Phi(1,\Phi(2,0))\\ \\ (0,0)(1,1)(2,1)(1,1)(2,1)&=&\\ \Phi(2,1)\\ \\ (0,0)(1,1)(2,1)(2,0)&=&\\ \Phi(2,\omega)\\ \\ (0,0)(1,1)(2,1)(2,1)&=&\\ \Phi(3,0)\\ \\ (0,0)(1,1)(2,1)(3,0)&=&\\ \Phi(\omega,0)\\ \\ (0,0)(1,1)(2,1)(3,1)&=&\\ \Phi(1,0,0)&=&\\ \Gamma_0\\ \\ (0,0)(1,1)(2,1)(3,1)(1,1)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),0)\\ \\ (0,0)(1,1)(2,1)(3,1)(1,1)(1,1)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),1)\\ \\ (0,0)(1,1)(2,1)(3,1)(1,1)(2,0)\\ (3,1)(4,1)(5,1)(3,1)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)),0))\\ \\ (0,0)(1,1)(2,1)(3,1)(1,1)(2,1)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(1,\Phi(1,0,0)))\\ \\ (0,0)(1,1)(2,1)(3,1)(1,1)(2,1)\\ (2,0)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0))))\\ \\ (0,0)(1,1)(2,1)(3,1)(4,0)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(\Phi(1,\Phi(1,0,0)))))\\ \\ (0,0)(1,1)(2,2)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+1),0))\\ \\ (0,0)(1,1)(2,2)(3,2)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+1),\Phi(1,\Phi(1,0,0)+1))))\\ \\ (0,0)(1,1)(2,2)(3,2)(4,0)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+1),\Phi(\Phi(1,\Phi(1,0,0)+1)))))\\ \\ (0,0)(1,1)(2,2)(3,2)(4,2)(5,0)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+1),\Phi(\Phi(\Phi(1,\Phi(1,0,0)+1))))))\\ \\ (0,0)(1,1)(2,2)(3,3)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+1),\Phi(\Phi(1,\Phi(1,0,0)+2),0))))\\ \\ (0,0)(1,1)(2,2)(3,3)(4,3)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+1),\Phi(\Phi(1,\Phi(1,0,0)+2),\Phi(1,\Phi(1,0,0)+2)))))\\ \\ (0,0)(1,1)(2,2)(3,3)(4,4)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+1),\Phi(\Phi(1,\Phi(1,0,0)+2),\Phi(\Phi(1,\Phi(1,0,0)+3),0)))))\\ \\ (0,0,0)(1,1,1)&=&\\ \Phi(\Phi(1,\Phi(1,0,0)),\Phi(\Phi(1,\Phi(1,0,0)+\omega),0))\\ \\ \end{array}