多変数アッカーマン関数 | |
---|---|
基本関数 | 後者関数 |
急増加関数 | \(f_{\omega^\omega}(n)\) |
多変数アッカーマン関数 \(A(x_1,x_2, …, x_n)\) は、2007年にたろうが考案し[1]、ふぃっしゅっしゅ(2013)[2]に紹介された。2変数の時にはアッカーマン関数と同じで、3変数以上になると配列表記と同じ程度の増加率となる多重再帰関数である。
定義[]
- X : 0個以上の0以上の整数
- Y : 0個以上の0
- a, b : 0以上の整数
\begin{eqnarray*} A(Y, a) & = & a+1 \\ A(X, b+1, 0) & = & A(X, b, 1) \\ A(X, b+1, a+1) & = & A( X, b, A(X, b+1, a) ) \\ A(X, b+1, 0, Y, a ) & = & A(X, b, a, Y, a) \end{eqnarray*}
計算[]
チェーン表記を使い、グラハム数との大きさ比較をする。2変数では通常のアッカーマン関数と同じなので
\begin{eqnarray*} A(x,y) & \approx & 3 \rightarrow y \rightarrow x-2 \\ \end{eqnarray*}
となる。3変数では
\begin{eqnarray*} A(1,1,0) & = & A(1,0,1) = A(0,1,1) = A(1,1) = 3 \\ A(1,1,1) & = & A(1,0,A(1,1,0)) = A(1,0,3) = A(3,3) = 61 \\ A(1,1,2) & = & A(1,0,61) = A(61,61) > 3 \rightarrow 3 \rightarrow 2 \rightarrow 2 \\ A(1,1,3) & \approx & A(1,0,3 \rightarrow 3 \rightarrow 2 \rightarrow 2) \approx 3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \\ A(1,1,4) & \approx & A(1,0,3 \rightarrow 3 \rightarrow 2 \rightarrow 3) \approx 3 \rightarrow 3 \rightarrow 4 \rightarrow 2 \\ A(1,1,x) & \approx & 3 \rightarrow 3 \rightarrow x \rightarrow 2 \\ A(1,1,65) & \approx & 3 \rightarrow 3 \rightarrow 65 \rightarrow 2 > G \\ A(1,2,0) & = & A(1,1,1) = 61 \\ A(1,2,1) & = & A(1,1,61) > 3 \rightarrow 3 \rightarrow 61 \rightarrow 2 \\ A(1,2,2) & \approx & A(1,1,3 \rightarrow 3 \rightarrow 61 \rightarrow 2) > 3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow 61 \rightarrow 2) \rightarrow 2 > A(1,1,65) \end{eqnarray*}
よって、 A(1,2,2) > A(1,1,65) > グラハム数 である。
コンウェイのチェーン表記との間との間には、次のような関係がある[3]。
\(x=1, y>1\) または \(x>1, y+z>0\) のとき
\[A(x,y,z) < \underbrace{3 \rightarrow3 \rightarrow \cdots \rightarrow 3}_{x+1個の3} \rightarrow z+2 \rightarrow y+1 < A(x,y,z+1)\]
すなわち、A(x,y,z)はx+3変数のチェーン表記と同程度の大きさとなり、A(1,0,1,2)はグラハム数の長さのチェーン表記を越える。
\begin{eqnarray*} A(1,0,1,0) & = & A(1,0,0,1) = A(1,0,1) = A(1,1) = 3 \\ A(1,0,1,1) & = & A(1,0,0,A(1,0,1,0)) \\ & = & A(1,0,0,3) = A(3,0,3) = A(2,3,3) \\ A(1,0,1,2) & = & A(1,0,0,A(1,0,1,1)) \\ & = & A(1,0,0,A(2,3,3)) \\ & = & A(A(2,3,3),0,A(2,3,3)) \approx \underbrace{3 \rightarrow 3 \rightarrow 3 ... 3 \rightarrow 3 \rightarrow 3}_{A(2,3,3)} \end{eqnarray*}
この関数の増加率は、急増加関数を使って次のように評価出来る。
\begin{eqnarray*} A(n, n) & \approx & f_{\omega}(n) \\ A(1, 0, n) & \approx & f_{\omega}(n) \\ A(a, 0, n) & \approx & f_{\omega・a}(n) \\ A(n, 0, n) & \approx & f_{\omega^2}(n) \\ A(1, 0, 0, n) & \approx & f_{\omega^2}(n) \\ A(a, 0, 0, n) & \approx & f_{\omega^2・a}(n) \\ A(n, 0, 0, n) & \approx & f_{\omega^3}(n) \\ A(1, 0, 0, 0, n) & \approx & f_{\omega^3}(n) \\ A(a, 0, 0, 0, n) & \approx & f_{\omega^3・a}(n) \\ A(n, 0, 0, 0, n) & \approx & f_{\omega^4}(n) \\ A(..., a3, a2, a1, a0, n) & \approx & f_{... + \omega^3・a3 + \omega^2・a2 + \omega・a1 + a0}(n) \\ A(\underbrace{1,1,...,1}_n) & \approx & f_{\omega^\omega}(n) \\ \end{eqnarray*}
他の記法による近似[]
\(A(..., d, c, b, a, n)\) は、次の様に近似される。
記法 | 近似 |
---|---|
BEAF | \(\lbrace n,2,a+1,b+1,c+1,d+1,... \rbrace\) |
急増加関数 | \(f_{... \omega^3 d + \omega^2 c + \omega b + a}(n)\) |
ハーディー階層 | \(H_{\omega^{... \omega^3 d + \omega^2 c + \omega b + a} }(n)\) |
参考サイト[]
- ↑ 巨大数探索スレッド7@2ch数学板でアップされた文書 (たろう, 2007年10月17日)
- ↑ ふぃっしゅっしゅ (2013) 巨大数論
- ↑ アッカーマンチェーン定理
関連項目[]
Aeton: おこじょ数・N成長階層
mrna: 段階配列表記・降下段階配列表記・多変数段階配列表記・横ネスト段階配列表記
Kanrokoti: くまくまψ関数・亜原始ψ関数・ハイパー原始ψ関数・TSS-ψ関数
クロちゃん: クロちゃん数(第一・第ニ・第三・第四)
じぇいそん: ふにゃふにゃぜぇたかんすう・\(\zeta\)関数
たろう: 多変数アッカーマン関数・2重リストアッカーマン関数・多重リストアッカーマン関数
Nayuta Ito: フラン数(第一形態・第二形態・第四形態改三)・N原始・東方巨大数4の規則の境界を突いた巨大数
バシク: 原始数列数・大数列数・ペア数列数・バシク行列システム
長谷川由紀路: 紅魔館のメイドナンバー・恋符マスタースパーク数・みくみく順序数
108Hassium: E2:B-01-Hs・L-階差数列類・E3:B-02-Hs
公太郎: 弱亜ペア数列・肉ヒドラ数列・弱ハイパーペア数列
p進大好きbot: 超限急増加関数表記・拡張ブーフホルツのψ関数に伴う順序数表記・四関数・三関数・巨大数庭園数
ふぃっしゅ: ふぃっしゅ数(バージョン1・バージョン2・バージョン3・バージョン4・バージョン5・バージョン6・バージョン7)・ マシモ関数・マシモスケール・TR関数(I0関数)
ゆきと: 亜原始数列・ハイパー原始数列・Y数列
本: 巨大数論・寿司虚空編
大会: 東方巨大数・幻想巨大数・即席巨大数・式神巨大数・お料理巨大数
掲示板: 巨大数探索スレッド
外部リンク: 日本語の巨大数関連サイト