λ {\displaystyle \lambda} (0) = ω {\displaystyle \omega}
λ {\displaystyle \lambda} (n) = ε n − 1 {\displaystyle \varepsilon _{n-1}} ; n>0
α − l i m : λ ( α ) = {\displaystyle \alpha -lim:\ \lambda (\alpha )=} lim_n -> ω { λ ( α [ n ] ) } ; λ ( α + β ) = λ ( α ) [ λ ( β ) ] {\displaystyle \omega \{\lambda (\alpha [n])\};\lambda (\alpha +\beta )=\lambda (\alpha )[\lambda (\beta )]}
Второе правило было создано моим другом, он оставил под моей нотацией УСН комментарий
λ {\displaystyle \lambda} (1) = ε 0 {\displaystyle \varepsilon_0} λ {\displaystyle \lambda} (2) = ε 1 , λ ( 3 ) = ε 2 , λ ( ω ) = ε ω , λ ( ω + 1 ) = ε ε 0 , λ ( ω × 2 ) = ε ε ε 0 , λ ( ω 2 ) = ζ 0 , λ ( ω 2 + 1 ) = ζ ϵ 0 , λ ( ω 2 × 2 ) = ζ ζ 0 {\displaystyle \varepsilon _{1},\ \lambda (3)=\varepsilon _{2},\ \lambda (\omega )=\varepsilon _{\omega },\ \lambda (\omega +1)=\varepsilon _{\varepsilon _{0}},\ \lambda (\omega \times 2)=\varepsilon _{\varepsilon _{\varepsilon _{0}}},\ \lambda (\omega ^{2})=\zeta _{0},\ \lambda (\omega ^{2}+1)=\zeta _{\epsilon _{0}},\ \lambda (\omega ^{2}\times 2)=\zeta _{\zeta _{0}}}
λ ( ω 3 ) = η 0 , λ ( ω ω ) = ϕ ( ω , 0 ) , λ ( ω ω + 1 ) = ϕ ( 1 , 0 , 0 ) = Γ 0 {\displaystyle \lambda (\omega ^{3})=\eta _{0},\ \lambda (\omega ^{\omega })=\phi (\omega ,0),\ \lambda (\omega ^{\omega +1})=\phi (1,0,0)=\Gamma _{0}}