10040 is the number following 10039 and preceding 10041.
Properties[]
- Its factors are 1, 2, 4, 5, 8, 10, 20, 40, 251, 502, 1004, 1255, 2008, 2510, 5020 and 10040, making it a composite number.[1][2][3]
- 10040 is an even number[4][5] .
- 10040 is an unhappy number.[6][7]
- 10040 is abundant.[8]
- Its prime factorization is 23 × 51 × 2511.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 100 ↑ 2 | ||
Scientific notation | 1.004 x 104 | 1.005 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 100 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {100,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5020) | Hω(5020) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0017 | ||
Hyper-E notation (non-10 base) | \(E[100]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 100{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5019)\) | \(s(1)(\lambda x . x+1)(5020)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10040 composite?
- ↑ Wolfram Alpha 10040's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10040 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers