10044 is the number following 10043 and preceding 10045.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 9, 12, 18, 27, 31, 36, 54, 62, 81, 93, 108, 124, 162, 186, 279, 324, 372, 558, 837, 1116, 1674, 2511, 3348, 5022 and 10044, making it a composite number.[1][2][3]
- 10044 is an even number[4][5] .
- 10044 is an unhappy number.[6][7]
- 10044 is abundant.[8]
- Its prime factorization is 22 × 34 × 311.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 100 ↑ 2 | ||
Scientific notation | 1.004 x 104 | 1.005 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 100 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {100,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5022) | Hω(5022) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0019 | ||
Hyper-E notation (non-10 base) | \(E[100]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 100{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5021)\) | \(s(1)(\lambda x . x+1)(5022)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10044 composite?
- ↑ Wolfram Alpha 10044's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10044 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers