1008 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | 1008 | 1009 |
1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 |
1020 | 1021 | 1022 | 1023 | 1024 | 1025 | 1026 | 1027 | 1028 | 1029 |
1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 |
1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 1048 | 1049 |
1050 | 1051 | 1052 | 1053 | 1054 | 1055 | 1056 | 1057 | 1058 | 1059 |
1060 | 1061 | 1062 | 1063 | 1064 | 1065 | 1066 | 1067 | 1068 | 1069 |
1070 | 1071 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 |
1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 1087 | 1088 | 1089 |
1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 1096 | 1097 | 1098 | 1099 |
1008 is the number following 1007 and preceding 1009.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504 and 1008, making it a composite number.[1][2][3]
- 1008 is an even number[4][5] .
- 1008 is an unhappy number.[6][7]
- 1008 is abundant.[8]
- Its prime factorization is 24 × 32 × 71.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 10 ↑ 3 | ||
Scientific notation | 1.008 x 103 | 1.009 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 9[3] | 10[2] | |
Chained arrow notation | 10 → 3 | ||
Bowers' Exploding Array Function/Bird's array notation | {10,3} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(504) | Hω(504) | |
Middle-growing hierarchy | m(ω,9) | m(ω,10) | |
Hyper-E notation | E3.0035 | ||
Hyper-E notation (non-10 base) | \(E[10]3\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 10{1}3 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[31] | (0)[32] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(503)\) | \(s(1)(\lambda x . x+1)(504)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1008 composite?
- ↑ Wolfram Alpha 1008's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1008 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers