10080 is the number following 10079 and preceding 10081.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 96, 105, 112, 120, 126, 140, 144, 160, 168, 180, 210, 224, 240, 252, 280, 288, 315, 336, 360, 420, 480, 504, 560, 630, 672, 720, 840, 1008, 1120, 1260, 1440, 1680, 2016, 2520, 3360, 5040 and 10080, making it a composite number.[1][2][3]
- 10080 is an even number[4][5] .
- 10080 is an unhappy number.[6][7]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 100 ↑ 2 | ||
Scientific notation | 1.008 x 104 | 1.009 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 100 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {100,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5040) | Hω(5040) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0035 | ||
Hyper-E notation (non-10 base) | \(E[100]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 100{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5039)\) | \(s(1)(\lambda x . x+1)(5040)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10080 composite?
- ↑ Wolfram Alpha 10080's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10080 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A004394 - Superabundant numbers