10098 is the number following 10097 and preceding 10099.
Properties[]
- Its factors are 1, 2, 3, 6, 9, 11, 17, 18, 22, 27, 33, 34, 51, 54, 66, 99, 102, 153, 187, 198, 297, 306, 374, 459, 561, 594, 918, 1122, 1683, 3366, 5049 and 10098, making it a composite number.[1][2][3]
- 10098 is an even number[4][5] .
- 10098 is an unhappy number.[6][7]
- 10098 is abundant.[8]
- Its prime factorization is 21 × 33 × 111 × 171.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 100 ↑ 2 | ||
Scientific notation | 1.01 x 104 | 1.011 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 100 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {100,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5049) | Hω(5049) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0042 | ||
Hyper-E notation (non-10 base) | \(E[100]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 100{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5048)\) | \(s(1)(\lambda x . x+1)(5049)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10098 composite?
- ↑ Wolfram Alpha 10098's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10098 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers