10112 is the number following 10111 and preceding 10113.
Properties[]
- Its factors are 1, 2, 4, 8, 16, 32, 64, 79, 128, 158, 316, 632, 1264, 2528, 5056 and 10112, making it a composite number.[1][2][3]
- 10112 is an even number[4][5] .
- 10112 is a happy number.[6][7]
- 10112 is abundant.[8]
- Its prime factorization is 27 × 791.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.011 x 104 | 1.012 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5056) | Hω(5056) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0048 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5055)\) | \(s(1)(\lambda x . x+1)(5056)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10112 composite?
- ↑ Wolfram Alpha 10112's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10112 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers