10120 is the number following 10119 and preceding 10121.
Properties[]
- Its factors are 1, 2, 4, 5, 8, 10, 11, 20, 22, 23, 40, 44, 46, 55, 88, 92, 110, 115, 184, 220, 230, 253, 440, 460, 506, 920, 1012, 1265, 2024, 2530, 5060 and 10120, making it a composite number.[1][2][3]
- 10120 is an even number[4][5] .
- 10120 is an unhappy number.[6][7]
- 10120 is abundant.[8]
- Its prime factorization is 23 × 51 × 111 × 231.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.012 x 104 | 1.013 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5060) | Hω(5060) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0052 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5059)\) | \(s(1)(\lambda x . x+1)(5060)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10120 composite?
- ↑ Wolfram Alpha 10120's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10120 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers