10176 is the number following 10175 and preceding 10177.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 53, 64, 96, 106, 159, 192, 212, 318, 424, 636, 848, 1272, 1696, 2544, 3392, 5088 and 10176, making it a composite number.[1][2][3]
- 10176 is an even number[4][5] .
- 10176 is an unhappy number.[6][7]
- 10176 is abundant.[8]
- Its prime factorization is 26 × 31 × 531.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.018 x 104 | 1.019 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5088) | Hω(5088) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0076 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5087)\) | \(s(1)(\lambda x . x+1)(5088)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10176 composite?
- ↑ Wolfram Alpha 10176's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10176 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers