10179 is the number following 10178 and preceding 10180.
Properties[]
- Its factors are 1, 3, 9, 13, 27, 29, 39, 87, 117, 261, 351, 377, 783, 1131, 3393 and 10179, making it a composite number.[1][2][3]
- 10179 is an odd number[4][5] .
- 10179 is an unhappy number.[6][7]
- 10179 is deficient.[8]
- Its prime factorization is 33 × 131 × 291.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.018 x 104 | 1.019 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5089) | Hω(5090) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0077 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5088)\) | \(s(1)(\lambda x . x+1)(5089)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10179 composite?
- ↑ Wolfram Alpha 10179's factors
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 10179 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers