10192 is the number following 10191 and preceding 10193.
Properties[]
- Its factors are 1, 2, 4, 7, 8, 13, 14, 16, 26, 28, 49, 52, 56, 91, 98, 104, 112, 182, 196, 208, 364, 392, 637, 728, 784, 1274, 1456, 2548, 5096 and 10192, making it a composite number.[1][2][3]
- 10192 is an even number[4][5] .
- 10192 is an unhappy number.[6][7]
- 10192 is abundant.[8]
- Its prime factorization is 24 × 72 × 131.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.019 x 104 | 1.02 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5096) | Hω(5096) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0083 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[100] | (0)[101] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5095)\) | \(s(1)(\lambda x . x+1)(5096)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10192 composite?
- ↑ Wolfram Alpha 10192's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10192 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers