10206 is the number following 10205 and preceding 10207.
Properties[]
- Its factors are 1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 81, 126, 162, 189, 243, 378, 486, 567, 729, 1134, 1458, 1701, 3402, 5103 and 10206, making it a composite number.[1][2][3]
- 10206 is an even number[4][5] .
- 10206 is an unhappy number.[6][7]
- 10206 is abundant.[8]
- Its prime factorization is 21 × 36 × 71.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.021 x 104 | 1.022 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(5103) | Hω(5103) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0089 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[101] | (0)[102] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5102)\) | \(s(1)(\lambda x . x+1)(5103)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10206 composite?
- ↑ Wolfram Alpha 10206's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10206 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers