10248 is the number following 10247 and preceding 10249.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 61, 84, 122, 168, 183, 244, 366, 427, 488, 732, 854, 1281, 1464, 1708, 2562, 3416, 5124 and 10248, making it a composite number.[1][2][3]
- 10248 is an even number[4][5] .
- 10248 is an unhappy number.[6][7]
- 10248 is abundant.[8]
- Its prime factorization is 23 × 31 × 71 × 611.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.025 x 104 | 1.026 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5124) | Hω(5124) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0106 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[101] | (0)[102] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5123)\) | \(s(1)(\lambda x . x+1)(5124)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10248 composite?
- ↑ Wolfram Alpha 10248's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10248 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers