10290 is the number following 10289 and preceding 10291.
Properties[]
- Its factors are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 49, 70, 98, 105, 147, 210, 245, 294, 343, 490, 686, 735, 1029, 1470, 1715, 2058, 3430, 5145 and 10290, making it a composite number.[1][2][3]
- 10290 is an even number[4][5] .
- 10290 is a happy number.[6][7]
- 10290 is abundant.[8]
- Its prime factorization is 21 × 31 × 51 × 73.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 101 ↑ 2 | ||
Scientific notation | 1.029 x 104 | 1.03 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 101 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {101,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5145) | Hω(5145) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0124 | ||
Hyper-E notation (non-10 base) | \(E[101]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 101{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[101] | (0)[102] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5144)\) | \(s(1)(\lambda x . x+1)(5145)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10290 composite?
- ↑ Wolfram Alpha 10290's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10290 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers