10332 is the number following 10331 and preceding 10333.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 41, 42, 63, 82, 84, 123, 126, 164, 246, 252, 287, 369, 492, 574, 738, 861, 1148, 1476, 1722, 2583, 3444, 5166 and 10332, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 10332 is an even number[5][6] .
- 10332 is a happy number.[7][8]
- 10332 is abundant.[9]
- Its prime factorization is 22 × 32 × 71 × 411.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 102 ↑ 2 | ||
Scientific notation | 1.033 x 104 | 1.034 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 102 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {102,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5166) | Hω(5166) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0142 | ||
Hyper-E notation (non-10 base) | \(E[102]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 102{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[101] | (0)[102] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5165)\) | \(s(1)(\lambda x . x+1)(5166)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10332 composite?
- ↑ Wolfram Alpha 10332's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10332 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers