10440 is the number following 10439 and preceding 10441.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 29, 30, 36, 40, 45, 58, 60, 72, 87, 90, 116, 120, 145, 174, 180, 232, 261, 290, 348, 360, 435, 522, 580, 696, 870, 1044, 1160, 1305, 1740, 2088, 2610, 3480, 5220 and 10440, making it a composite number.[1][2][3]
- 10440 is an even number[4][5] .
- 10440 is an unhappy number.[6][7]
- 10440 is a triangular number.[8]
- 10440 is abundant.[9]
- Its prime factorization is 23 × 32 × 51 × 291.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 102 ↑ 2 | ||
Scientific notation | 1.044 x 104 | 1.045 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 102 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {102,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5220) | Hω(5220) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0187 | ||
Hyper-E notation (non-10 base) | \(E[102]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 102{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[102] | (0)[103] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5219)\) | \(s(1)(\lambda x . x+1)(5220)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10440 composite?
- ↑ Wolfram Alpha 10440's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10440 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A000217 - Triangular numbers
- ↑ OEIS A005101 - Abundant numbers