10500 is the number following 10499 and preceding 10501.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 25, 28, 30, 35, 42, 50, 60, 70, 75, 84, 100, 105, 125, 140, 150, 175, 210, 250, 300, 350, 375, 420, 500, 525, 700, 750, 875, 1050, 1500, 1750, 2100, 2625, 3500, 5250 and 10500, making it a composite number.[1][2][3]
- 10500 is an even number[4][5] .
- 10500 is an unhappy number.[6][7]
- 10500 is abundant.[8]
- Its prime factorization is 22 × 31 × 53 × 71.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 102 ↑ 2 | ||
Scientific notation | 1.05 x 104 | 1.051 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 102 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {102,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5250) | Hω(5250) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0212 | ||
Hyper-E notation (non-10 base) | \(E[102]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 102{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[102] | (0)[103] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5249)\) | \(s(1)(\lambda x . x+1)(5250)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10500 composite?
- ↑ Wolfram Alpha 10500's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10500 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers