10542 is the number following 10541 and preceding 10543.
Properties[]
- Its factors are 1, 2, 3, 6, 7, 14, 21, 42, 251, 502, 753, 1506, 1757, 3514, 5271 and 10542, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 10542 is an even number[5][6] .
- 10542 is an unhappy number.[7][8]
- 10542 is a pentagonal number.[9]
- 10542 is abundant.[10]
- Its prime factorization is 21 × 31 × 71 × 2511.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 103 ↑ 2 | ||
Scientific notation | 1.054 x 104 | 1.055 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 103 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {103,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5271) | Hω(5271) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0229 | ||
Hyper-E notation (non-10 base) | \(E[103]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 103{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[102] | (0)[103] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5270)\) | \(s(1)(\lambda x . x+1)(5271)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10542 composite?
- ↑ Wolfram Alpha 10542's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10542 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A000326 - Pentagonal numbers
- ↑ OEIS A005101 - Abundant numbers