10584 is the number following 10583 and preceding 10585.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 27, 28, 36, 42, 49, 54, 56, 63, 72, 84, 98, 108, 126, 147, 168, 189, 196, 216, 252, 294, 378, 392, 441, 504, 588, 756, 882, 1176, 1323, 1512, 1764, 2646, 3528, 5292 and 10584, making it a composite number.[1][2][3]
- 10584 is an even number[4][5] .
- 10584 is an unhappy number.[6][7]
- 10584 is abundant.[8]
- Its prime factorization is 23 × 33 × 72.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 103 ↑ 2 | ||
Scientific notation | 1.058 x 104 | 1.059 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 103 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {103,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5292) | Hω(5292) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0246 | ||
Hyper-E notation (non-10 base) | \(E[103]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 103{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[102] | (0)[103] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5291)\) | \(s(1)(\lambda x . x+1)(5292)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10584 composite?
- ↑ Wolfram Alpha 10584's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10584 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers