10626 is the number following 10625 and preceding 10627.
Properties[]
- Its factors are 1, 2, 3, 6, 7, 11, 14, 21, 22, 23, 33, 42, 46, 66, 69, 77, 138, 154, 161, 231, 253, 322, 462, 483, 506, 759, 966, 1518, 1771, 3542, 5313 and 10626, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 10626 is an even number[5][6] .
- 10626 is an unhappy number.[7][8]
- 10626 is abundant.[9]
- Its prime factorization is 21 × 31 × 71 × 111 × 231.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 103 ↑ 2 | ||
Scientific notation | 1.063 x 104 | 1.064 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 103 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {103,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5313) | Hω(5313) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0264 | ||
Hyper-E notation (non-10 base) | \(E[103]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 103{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[103] | (0)[104] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5312)\) | \(s(1)(\lambda x . x+1)(5313)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10626 composite?
- ↑ Wolfram Alpha 10626's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10626 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers