10704 is the number following 10703 and preceding 10705.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48, 223, 446, 669, 892, 1338, 1784, 2676, 3568, 5352 and 10704, making it a composite number.[1][2][3]
- 10704 is an even number[4][5] .
- 10704 is an unhappy number.[6][7]
- 10704 is abundant.[8]
- Its prime factorization is 24 × 31 × 2231.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 22 ↑ 3 | ||
Scientific notation | 1.07 x 104 | 1.071 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 22 → 3 | ||
Bowers' Exploding Array Function/Bird's array notation | {22,3} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5352) | Hω(5352) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0295 | ||
Hyper-E notation (non-10 base) | \(E[22]3\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 22{1}3 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[103] | (0)[104] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5351)\) | \(s(1)(\lambda x . x+1)(5352)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10704 composite?
- ↑ Wolfram Alpha 10704's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10704 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers