10760 is the number following 10759 and preceding 10761.
Properties[]
- Its factors are 1, 2, 4, 5, 8, 10, 20, 40, 269, 538, 1076, 1345, 2152, 2690, 5380 and 10760, making it a composite number.[1][2][3]
- 10760 is an even number[4][5] .
- 10760 is a happy number.[6][7]
- 10760 is abundant.[8]
- Its prime factorization is 23 × 51 × 2691.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 104 ↑ 2 | ||
Scientific notation | 1.076 x 104 | 1.077 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 104 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {104,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5380) | Hω(5380) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0318 | ||
Hyper-E notation (non-10 base) | \(E[104]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 104{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[103] | (0)[104] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5379)\) | \(s(1)(\lambda x . x+1)(5380)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10760 composite?
- ↑ Wolfram Alpha 10760's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10760 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers