10780 is the number following 10779 and preceding 10781.
Properties[]
- Its factors are 1, 2, 4, 5, 7, 10, 11, 14, 20, 22, 28, 35, 44, 49, 55, 70, 77, 98, 110, 140, 154, 196, 220, 245, 308, 385, 490, 539, 770, 980, 1078, 1540, 2156, 2695, 5390 and 10780, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 10780 is an even number[5][6] .
- 10780 is an unhappy number.[7][8]
- 10780 is abundant.[9]
- Its prime factorization is 22 × 51 × 72 × 111.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 104 ↑ 2 | ||
Scientific notation | 1.078 x 104 | 1.079 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 104 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {104,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5390) | Hω(5390) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0326 | ||
Hyper-E notation (non-10 base) | \(E[104]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 104{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[103] | (0)[104] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5389)\) | \(s(1)(\lambda x . x+1)(5390)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10780 composite?
- ↑ Wolfram Alpha 10780's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10780 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers