10800 is the number following 10799 and preceding 10801.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 36, 40, 45, 48, 50, 54, 60, 72, 75, 80, 90, 100, 108, 120, 135, 144, 150, 180, 200, 216, 225, 240, 270, 300, 360, 400, 432, 450, 540, 600, 675, 720, 900, 1080, 1200, 1350, 1800, 2160, 2700, 3600, 5400 and 10800, making it a composite number.[1][2][3]
- 10800 is an even number[4][5] .
- 10800 is an unhappy number.[6][7]
- 10800 is abundant.[8]
- Its prime factorization is 24 × 33 × 52.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 104 ↑ 2 | ||
Scientific notation | 1.08 x 104 | 1.081 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 104 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {104,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5400) | Hω(5400) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0334 | ||
Hyper-E notation (non-10 base) | \(E[104]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 104{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[103] | (0)[104] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5399)\) | \(s(1)(\lambda x . x+1)(5400)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10800 composite?
- ↑ Wolfram Alpha 10800's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10800 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers