10824 is the number following 10823 and preceding 10825.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 41, 44, 66, 82, 88, 123, 132, 164, 246, 264, 328, 451, 492, 902, 984, 1353, 1804, 2706, 3608, 5412 and 10824, making it a composite number.[1][2][3]
- 10824 is an even number[4][5] .
- 10824 is an unhappy number.[6][7]
- 10824 is abundant.[8]
- Its prime factorization is 23 × 31 × 111 × 411.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 104 ↑ 2 | ||
Scientific notation | 1.082 x 104 | 1.083 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 104 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {104,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5412) | Hω(5412) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0344 | ||
Hyper-E notation (non-10 base) | \(E[104]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 104{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[104] | (0)[105] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5411)\) | \(s(1)(\lambda x . x+1)(5412)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10824 composite?
- ↑ Wolfram Alpha 10824's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10824 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers