10920 is the number following 10919 and preceding 10921.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 20, 21, 24, 26, 28, 30, 35, 39, 40, 42, 52, 56, 60, 65, 70, 78, 84, 91, 104, 105, 120, 130, 140, 156, 168, 182, 195, 210, 260, 273, 280, 312, 364, 390, 420, 455, 520, 546, 728, 780, 840, 910, 1092, 1365, 1560, 1820, 2184, 2730, 3640, 5460 and 10920, making it a composite number.[1][2][3]
- 10920 is an even number[4][5] .
- 10920 is a happy number.[6][7]
- 10920 is a pronic number.[8]
- 10920 is abundant.[9]
- Its prime factorization is 23 × 31 × 51 × 71 × 131.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 104 ↑ 2 | ||
Scientific notation | 1.092 x 104 | 1.093 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 104 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {104,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5460) | Hω(5460) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0382 | ||
Hyper-E notation (non-10 base) | \(E[104]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 104{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[104] | (0)[105] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5459)\) | \(s(1)(\lambda x . x+1)(5460)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 10920 composite?
- ↑ Wolfram Alpha 10920's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 10920 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A002378 - Pronic numbers
- ↑ OEIS A005101 - Abundant numbers