110 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |
110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |
120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 |
130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 |
140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 |
150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 |
180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 |
190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 |
110 (one hundred ten) is a positive integer following 109 and preceding 111. It is even and composite. In The Lord of the Rings, by J.R.R. Tolkien, the name eleventy is given, e.g. for Bilbos age.

Properties[]
- Its factors are 1, 2, 5, 10, 11, 22, 55 and 110, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 110 is an even number[5][6] .
- 110 is an unhappy number.[7][8]
Examples
- 110 is an emergency phone number for police in Japan.[11]
- It is the number of possible king moves in 4×5 minichess.
- It is a common cab width (in centimeters) for elevators. Furthermore, it is a common number of grooves per step for escalators.
In googology
DeepLineMadom calls the number unoogol, unoo-hectol, and boo-endecol, and is equal to 10[1]100 in DeepLineMadom's Array Notation[12][13].
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 10 ↑ 2 | ||
Scientific notation | 1.1 x 102 | 1.101 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(3)\) | \(g_{\omega^{\omega}}(4)\) | |
Copy notation | 9[2] | 1[3] | |
Chained arrow notation | 10 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {10,2} | ||
Fast-growing hierarchy | f1(54) | f1(55) | |
Hardy hierarchy | Hω(55) | Hω(55) | |
Middle-growing hierarchy | m(ω,6) | m(ω,7) | |
Hyper-E notation | E2.0414 | ||
Hyper-E notation (non-10 base) | \(E[10]2\) | ||
Hyperfactorial array notation | 4! | 5! | |
X-Sequence Hyper-Exponential Notation | 10{1}2 | ||
Steinhaus-Moser Notation | 3[3] | 4[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.4) | H(-0.3) | |
Bashicu matrix system with respect to version 4 | (0)[10] | (0)[11] | |
m(n) map | m(1)(3) | m(1)(4) | |
s(n) map | \(s(1)(\lambda x . x+1)(54)\) | \(s(1)(\lambda x . x+1)(55)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 110 composite?
- ↑ Wolfram Alpha 110's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 110 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A002378 - Pronic numbers
- ↑ OEIS A005100 - Deficient numbers
- ↑ What I leaned in Japan. 110 vs 119 Emergency Numbers in Japan
- ↑ DeepLineMadom's googology - Numbers I've coined (Retrieved 4 May 2022)
- ↑ Pointless Googolplex Stuffs - DLMAN Part 1 (retrieved 9 November 2024)