11025 is the number following 11024 and preceding 11026.
Properties[]
- Its factors are 1, 3, 5, 7, 9, 15, 21, 25, 35, 45, 49, 63, 75, 105, 147, 175, 225, 245, 315, 441, 525, 735, 1225, 1575, 2205, 3675 and 11025, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 11025 is an odd number[5][6] .
- 11025 is a happy number.[7][8]
- 11025 is a centered octagonal number.[9]
- 11025 is abundant.[10]
- Its prime factorization is 32 × 52 × 72.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 105 ↑ 2 | ||
Scientific notation | 1.103 x 104 | 1.104 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 105 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {105,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5512) | Hω(5513) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0424 | ||
Hyper-E notation (non-10 base) | \(E[105]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 105{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[105] | (0)[105] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5511)\) | \(s(1)(\lambda x . x+1)(5512)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 11025 composite?
- ↑ Wolfram Alpha 11025's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 11025 odd?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A016754 - Centered octagonal numbers
- ↑ OEIS A005101 - Abundant numbers