11028 is the number following 11027 and preceding 11029.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 12, 919, 1838, 2757, 3676, 5514 and 11028, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 11028 is an even number[5][6] .
- 11028 is a happy number.[7][8]
- 11028 is abundant.[9]
- Its prime factorization is 22 × 31 × 9191.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 105 ↑ 2 | ||
Scientific notation | 1.103 x 104 | 1.104 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 105 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {105,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5514) | Hω(5514) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0425 | ||
Hyper-E notation (non-10 base) | \(E[105]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 105{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[105] | (0)[106] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5513)\) | \(s(1)(\lambda x . x+1)(5514)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 11028 composite?
- ↑ Wolfram Alpha 11028's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 11028 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers