11040 is the number following 11039 and preceding 11041.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 23, 24, 30, 32, 40, 46, 48, 60, 69, 80, 92, 96, 115, 120, 138, 160, 184, 230, 240, 276, 345, 368, 460, 480, 552, 690, 736, 920, 1104, 1380, 1840, 2208, 2760, 3680, 5520 and 11040, making it a composite number.[1][2][3]
- 11040 is an even number[4][5] .
- 11040 is an unhappy number.[6][7]
- 11040 is abundant.[8]
- Its prime factorization is 25 × 31 × 51 × 231.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 105 ↑ 2 | ||
Scientific notation | 1.104 x 104 | 1.105 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 105 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {105,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5520) | Hω(5520) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.043 | ||
Hyper-E notation (non-10 base) | \(E[105]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 105{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[105] | (0)[106] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5519)\) | \(s(1)(\lambda x . x+1)(5520)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 11040 composite?
- ↑ Wolfram Alpha 11040's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 11040 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers