11088 is the number following 11087 and preceding 11089.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 21, 22, 24, 28, 33, 36, 42, 44, 48, 56, 63, 66, 72, 77, 84, 88, 99, 112, 126, 132, 144, 154, 168, 176, 198, 231, 252, 264, 308, 336, 396, 462, 504, 528, 616, 693, 792, 924, 1008, 1232, 1386, 1584, 1848, 2772, 3696, 5544 and 11088, making it a composite number.[1][2][3]
- 11088 is an even number[4][5] .
- 11088 is a happy number.[6][7]
- 11088 is abundant.[8]
- Its prime factorization is 24 × 32 × 71 × 111.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 105 ↑ 2 | ||
Scientific notation | 1.109 x 104 | 1.11 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 9[4] | 1[5] | |
Chained arrow notation | 105 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {105,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5544) | Hω(5544) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0449 | ||
Hyper-E notation (non-10 base) | \(E[105]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 105{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[105] | (0)[106] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5543)\) | \(s(1)(\lambda x . x+1)(5544)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 11088 composite?
- ↑ Wolfram Alpha 11088's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 11088 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers