11131 is the number following 11130 and preceding 11132.
Properties[]
- It is the 1349th prime number.[1][2][3]
- 11131 is an odd number[4][5] .
- 11131 is a happy number.[6][7]
- 11131 is deficient.[8]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 106 ↑ 2 | ||
Scientific notation | 1.113 x 104 | 1.114 x 104 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 1[5] | 2[5] | |
Chained arrow notation | 106 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {106,2} | ||
Fast-growing hierarchy | f2(10) | f2(11) | |
Hardy hierarchy | Hω(5565) | Hω(5566) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E4.0465 | ||
Hyper-E notation (non-10 base) | \(E[106]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 106{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[105] | (0)[106] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(5564)\) | \(s(1)(\lambda x . x+1)(5565)\) |
Sources[]
- ↑ OEIS A000040 - Primes
- ↑ Wolfram Alpha Is 11131 prime?
- ↑ Wolfram Alpha 11131's factors
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 11131 odd?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005100 - Deficient numbers