1200 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 |
1210 | 1211 | 1212 | 1213 | 1214 | 1215 | 1216 | 1217 | 1218 | 1219 |
1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 |
1230 | 1231 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 |
1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | 1248 | 1249 |
1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 |
1260 | 1261 | 1262 | 1263 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 |
1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 |
1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 |
1290 | 1291 | 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 |
1200 is the number following 1199 and preceding 1201.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 25, 30, 40, 48, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 600 and 1200, making it a composite number.[1][2][3]
- 1200 is an even number[4][5] .
- 1200 is an unhappy number.[6][7]
- 1200 is abundant.[8]
- Its prime factorization is 24 × 31 × 52.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 35 ↑ 2 | ||
Scientific notation | 1.2 x 103 | 1.201 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 1[4] | 12[2] | |
Chained arrow notation | 35 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {35,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(600) | Hω(600) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.0792 | ||
Hyper-E notation (non-10 base) | \(E[35]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 35{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[34] | (0)[35] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(599)\) | \(s(1)(\lambda x . x+1)(600)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1200 composite?
- ↑ Wolfram Alpha 1200's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1200 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers