1260 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 |
1210 | 1211 | 1212 | 1213 | 1214 | 1215 | 1216 | 1217 | 1218 | 1219 |
1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 |
1230 | 1231 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 |
1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | 1248 | 1249 |
1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 |
1260 | 1261 | 1262 | 1263 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 |
1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 |
1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 |
1290 | 1291 | 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 |
1260 is the number following 1259 and preceding 1261.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630 and 1260, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 1260 is an even number[5][6] .
- 1260 is an unhappy number.[7][8]
- 1260 is a pronic number.[9]
- 1260 is abundant and superabundant.[10][11]
- Its prime factorization is 22 × 32 × 51 × 71.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 35 ↑ 2 | ||
Scientific notation | 1.26 x 103 | 1.261 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 12[2] | 13[2] | |
Chained arrow notation | 35 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {35,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(630) | Hω(630) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.1004 | ||
Hyper-E notation (non-10 base) | \(E[35]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 35{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[35] | (0)[36] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(629)\) | \(s(1)(\lambda x . x+1)(630)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1260 composite?
- ↑ Wolfram Alpha 1260's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1260 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A002378 - Pronic numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A004394 - Superabundant numbers