1265 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 |
1210 | 1211 | 1212 | 1213 | 1214 | 1215 | 1216 | 1217 | 1218 | 1219 |
1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 |
1230 | 1231 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 |
1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | 1248 | 1249 |
1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 |
1260 | 1261 | 1262 | 1263 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 |
1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 |
1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 |
1290 | 1291 | 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 |
1265 is the number following 1264 and preceding 1266.
Properties[]
- Its factors are 1, 5, 11, 23, 55, 115, 253 and 1265, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 1265 is an odd number[5][6] .
- 1265 is an unhappy number.[7][8]
- 1265 is deficient.[9]
- Its prime factorization is 51 × 111 × 231.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 36 ↑ 2 | ||
Scientific notation | 1.265 x 103 | 1.266 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 12[2] | 13[2] | |
Chained arrow notation | 36 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {36,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(632) | Hω(633) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.1021 | ||
Hyper-E notation (non-10 base) | \(E[36]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 36{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[35] | (0)[36] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(631)\) | \(s(1)(\lambda x . x+1)(632)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1265 composite?
- ↑ Wolfram Alpha 1265's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 1265 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers