127 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |
110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |
120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 |
130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 |
140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 |
150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 |
180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 |
190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 |
127 is the number following 126 and preceding 128[1].
Properties[]
- 127 is a centered hexagonal number.[9]
- 127 is a Mersenne number; it is equal to \(2^{ 7}-1\).[10]
- 127 is deficient.[11]
- The 4th Mersenne prime 127 is equal to \(2^{2^3-1}-1\). It is also a Catalan-Mersenne number.[12]In many progamming languages it is the maximum value of an 8-bit signed integer.[13]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 5 ↑ 3 | ||
Scientific notation | \(1.27\times10^2\) | \(1.271\times10^2\) | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(3)\) | \(g_{\omega^{\omega}}(4)\) | |
Copy notation | 1[3] | 2[3] | |
Chained arrow notation | 5 → 3 | ||
Bowers' Exploding Array Function/Bird's array notation | {5,3} | ||
Fast-growing hierarchy | f1(62) | f1(63) | |
Hardy hierarchy | Hω(63) | Hω(64) | |
Middle-growing hierarchy | m(ω,6) | m(ω,7) | |
Hyper-E notation | E2.1038 | ||
Hyper-E notation (non-10 base) | \(E[5]3\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 5{1}3 | ||
Steinhaus-Moser Notation | 3[3] | 4[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.3) | H(-0.2) | |
Bashicu matrix system with respect to version 4 | (0)[11] | (0)[12] |
Sources[]
- ↑ Wolfram Alpha 127
- ↑ OEIS A000040 - Primes
- ↑ Wolfram Alpha Is 127 prime?
- ↑ Wolfram Alpha 127's factors
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 127 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A003215 - Centered hexagonal numbers
- ↑ OEIS A000225 - Mersenne numbers
- ↑ OEIS A005100 - Deficient numbers
- ↑ https://mathworld.wolfram.com/Catalan-MersenneNumber.html
- ↑ https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/integral-numeric-types