1296 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 |
1210 | 1211 | 1212 | 1213 | 1214 | 1215 | 1216 | 1217 | 1218 | 1219 |
1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 |
1230 | 1231 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 |
1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | 1248 | 1249 |
1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 |
1260 | 1261 | 1262 | 1263 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 |
1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 |
1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 |
1290 | 1291 | 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 |
1296 is the number following 1295 and preceding 1297[1].
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 81, 108, 144, 162, 216, 324, 432, 648 and 1296, making it a composite number.[2][3][4]
- 1296 is an even number[5][6] .
- 1296 is an unhappy number.[7][8]
- 1296 is a centered octagonal number.[9]
- 1296 is abundant.[10]
- Its prime factorization is 24 × 34.
- jan Misali coined unexian for this number, also called uneciam, since it is equal to 1 00006 in the Misalian seximal system.[11][12]
- It is also called ntamno in the Kómnzo language.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 36 ↑ 2 | ||
Scientific notation | 1.296 x 103 | 1.297 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 12[2] | 13[2] | |
Chained arrow notation | 36 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {36,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(648) | Hω(648) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.1126 | ||
Hyper-E notation (non-10 base) | \(E[36]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 36{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[36] | (0)[36] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(647)\) | \(s(1)(\lambda x . x+1)(648)\) |
Sources[]
- ↑ Wolfram Alpha 1296
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1296 composite?
- ↑ Wolfram Alpha 1296's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1296 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A016754 - Centered octagonal numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ seximal nomenclature
- ↑ seximal googology