1440 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | 1408 | 1409 |
1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 |
1420 | 1421 | 1422 | 1423 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 |
1430 | 1431 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 1439 |
1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 |
1450 | 1451 | 1452 | 1453 | 1454 | 1455 | 1456 | 1457 | 1458 | 1459 |
1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 |
1470 | 1471 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 |
1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | 1488 | 1489 |
1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 |
1440 is the number following 1439 and preceding 1441[1].
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60, 72, 80, 90, 96, 120, 144, 160, 180, 240, 288, 360, 480, 720 and 1440, making it a composite number.[2][3][4]
- 1440 is an even number[5][6] .
- 1440 is an unhappy number.[7][8]
- 1440 is abundant.[9]
- Its prime factorization is 25 × 32 × 51.
- 1440 is the order of the automorphism group of the simple group A6.
- It is the number of minutes in a day.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 38 ↑ 2 | ||
Scientific notation | 1.44 x 103 | 1.441 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 14[2] | 15[2] | |
Chained arrow notation | 38 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {38,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(720) | Hω(720) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.1584 | ||
Hyper-E notation (non-10 base) | \(E[38]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 38{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[37] | (0)[38] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(719)\) | \(s(1)(\lambda x . x+1)(720)\) |
Sources[]
- ↑ Wolfram Alpha 1440
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1440 composite?
- ↑ Wolfram Alpha 1440's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1440 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers