Googology Wiki
Googology Wiki

View full site to see MathJax equation

1445 is the number following 1444 and preceding 1446[1].

Properties[]

  • 1445 is deficient.[10]
  • Its prime factorization is 51 × 172.
  • It is the index of the compositorial k! ÷/ k# + 1, that is prime.[11]

Approximations[]

Notation Lower bound Upper bound
Up-arrow notation 38 ↑ 2
Scientific notation 1.445 x 103 1.446 x 103
Slow-growing hierarchy \(g_{\omega^{\omega}}(4)\) \(g_{\omega^{\omega}}(5)\)
Copy notation 14[2] 15[2]
Chained arrow notation 38 → 2
Bowers' Exploding Array Function/Bird's array notation {38,2}
Fast-growing hierarchy f2(7) f2(8)
Hardy hierarchy Hω(722) Hω(723)
Middle-growing hierarchy m(ω,10) m(ω,11)
Hyper-E notation E3.1599
Hyper-E notation (non-10 base) \(E[38]2\)
Hyperfactorial array notation 6! 7!
X-Sequence Hyper-Exponential Notation 38{1}2
Steinhaus-Moser Notation 4[3] 5[3]
PlantStar's Debut Notation [1] [2]
H* function H(0) H(0.1)
Bashicu matrix system with respect to version 4 (0)[38] (0)[39]
m(n) map m(1)(4) m(1)(5)
s(n) map \(s(1)(\lambda x . x+1)(721)\) \(s(1)(\lambda x . x+1)(722)\)

Sources[]

  1. Wolfram Alpha 1445
  2. OEIS A002808 - Composite numbers
  3. Wolfram Alpha Is 1445 composite?
  4. Wolfram Alpha 1445's factors
  5. OEIS A004709 - Cubefree numbers
  6. OEIS A005408 - Odd numbers
  7. Wolfram Alpha Is 1445 odd?
  8. Wolfram Alpha Unhappy Numbers
  9. OEIS A031177 - Unhappy Numbers
  10. OEIS A005100 - Deficient numbers
  11. OEIS A140294 (Numbers k such that k!/k# + 1 is prime, where k# is the primorial function) Retrieved 2025-01-12.