1445 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | 1408 | 1409 |
1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 |
1420 | 1421 | 1422 | 1423 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 |
1430 | 1431 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 1439 |
1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 |
1450 | 1451 | 1452 | 1453 | 1454 | 1455 | 1456 | 1457 | 1458 | 1459 |
1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 |
1470 | 1471 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 |
1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | 1488 | 1489 |
1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 |
1445 is the number following 1444 and preceding 1446[1].
Properties[]
- Its factors are 1, 5, 17, 85, 289 and 1445, making it a composite number.[2][3][4] It is also a cubefree number.[5]
- 1445 is an odd number[6][7] .
- 1445 is an unhappy number.[8][9]
- 1445 is deficient.[10]
- Its prime factorization is 51 × 172.
- It is the index of the compositorial k! ÷/ k# + 1, that is prime.[11]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 38 ↑ 2 | ||
Scientific notation | 1.445 x 103 | 1.446 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 14[2] | 15[2] | |
Chained arrow notation | 38 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {38,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(722) | Hω(723) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.1599 | ||
Hyper-E notation (non-10 base) | \(E[38]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 38{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[38] | (0)[39] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(721)\) | \(s(1)(\lambda x . x+1)(722)\) |
Sources[]
- ↑ Wolfram Alpha 1445
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1445 composite?
- ↑ Wolfram Alpha 1445's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 1445 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers
- ↑ OEIS A140294 (Numbers k such that k!/k# + 1 is prime, where k# is the primorial function) Retrieved 2025-01-12.