1532 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1500 | 1501 | 1502 | 1503 | 1504 | 1505 | 1506 | 1507 | 1508 | 1509 |
1510 | 1511 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 |
1520 | 1521 | 1522 | 1523 | 1524 | 1525 | 1526 | 1527 | 1528 | 1529 |
1530 | 1531 | 1532 | 1533 | 1534 | 1535 | 1536 | 1537 | 1538 | 1539 |
1540 | 1541 | 1542 | 1543 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 |
1550 | 1551 | 1552 | 1553 | 1554 | 1555 | 1556 | 1557 | 1558 | 1559 |
1560 | 1561 | 1562 | 1563 | 1564 | 1565 | 1566 | 1567 | 1568 | 1569 |
1570 | 1571 | 1572 | 1573 | 1574 | 1575 | 1576 | 1577 | 1578 | 1579 |
1580 | 1581 | 1582 | 1583 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 |
1590 | 1591 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 1599 |
1532 is the number following 1531 and preceding 1533.
Properties[]
- Its factors are 1, 2, 4, 383, 766 and 1532, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 1532 is an even number[5][6] .
- 1532 is an unhappy number.[7][8]
- 1532 is deficient.[9]
- Its prime factorization is 22 × 3831.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 39 ↑ 2 | ||
Scientific notation | 1.532 x 103 | 1.533 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 15[2] | 16[2] | |
Chained arrow notation | 39 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {39,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(766) | Hω(766) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.1853 | ||
Hyper-E notation (non-10 base) | \(E[39]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 39{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[39] | (0)[40] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(765)\) | \(s(1)(\lambda x . x+1)(766)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1532 composite?
- ↑ Wolfram Alpha 1532's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1532 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers