1680 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 |
1610 | 1611 | 1612 | 1613 | 1614 | 1615 | 1616 | 1617 | 1618 | 1619 |
1620 | 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 |
1630 | 1631 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 |
1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | 1648 | 1649 |
1650 | 1651 | 1652 | 1653 | 1654 | 1655 | 1656 | 1657 | 1658 | 1659 |
1660 | 1661 | 1662 | 1663 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 |
1670 | 1671 | 1672 | 1673 | 1674 | 1675 | 1676 | 1677 | 1678 | 1679 |
1680 | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | 1688 | 1689 |
1690 | 1691 | 1692 | 1693 | 1694 | 1695 | 1696 | 1697 | 1698 | 1699 |
1680 is the number following 1679 and preceding 1681.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84, 105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840 and 1680, making it a composite number.[1][2][3]
- 1680 is an even number[4][5] .
- 1680 is an unhappy number.[6][7]
- 1680 is an octagonal number.[8]
- 1680 is a quadruple factorial.[9]
- 1680 is abundant and superabundant.[10][11]
- Its prime factorization is 24 × 31 × 51 × 71.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 41 ↑ 2 | ||
Scientific notation | 1.68 x 103 | 1.681 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 16[2] | 17[2] | |
Chained arrow notation | 41 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {41,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(840) | Hω(840) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.2253 | ||
Hyper-E notation (non-10 base) | \(E[41]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 41{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[40] | (0)[41] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(839)\) | \(s(1)(\lambda x . x+1)(840)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1680 composite?
- ↑ Wolfram Alpha 1680's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1680 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A000456 - Octagonal numbers
- ↑ OEIS A007662 - Quadruple factorial numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A004394 - Superabundant numbers