| 1800 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 1800 | 1801 | 1802 | 1803 | 1804 | 1805 | 1806 | 1807 | 1808 | 1809 |
| 1810 | 1811 | 1812 | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 |
| 1820 | 1821 | 1822 | 1823 | 1824 | 1825 | 1826 | 1827 | 1828 | 1829 |
| 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836 | 1837 | 1838 | 1839 |
| 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1849 |
| 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | 1856 | 1857 | 1858 | 1859 |
| 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 |
| 1870 | 1871 | 1872 | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | 1879 |
| 1880 | 1881 | 1882 | 1883 | 1884 | 1885 | 1886 | 1887 | 1888 | 1889 |
| 1890 | 1891 | 1892 | 1893 | 1894 | 1895 | 1896 | 1897 | 1898 | 1899 |
1800 is the number following 1799 and preceding 1801.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 25, 30, 36, 40, 45, 50, 60, 72, 75, 90, 100, 120, 150, 180, 200, 225, 300, 360, 450, 600, 900 and 1800, making it a composite number.[1][2][3]
- 1800 is an even number[4][5] .
- 1800 is an unhappy number.[6][7]
- 1800 is abundant.[8]
- Its prime factorization is 23 × 32 × 52.
- 1800 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 42 ↑ 2 | ||
| Scientific notation | 1.8 x 103 | 1.801 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
| Copy notation | 17[2] | 18[2] | |
| Chained arrow notation | 42 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {42,2} | ||
| Fast-growing hierarchy | f2(7) | f2(8) | |
| Hardy hierarchy | Hω(900) | Hω(900) | |
| Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
| Hyper-E notation | E3.2553 | ||
| Hyper-E notation (non-10 base) | \(E[42]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 42{1}2 | ||
| Steinhaus-Moser Notation | 4[3] | 5[3] | |
| PlantStar's Debut Notation | [1] | [2] | |
| H* function | H(0) | H(0.1) | |
| Bashicu matrix system with respect to version 4 | (0)[42] | (0)[43] | |
| m(n) map | m(1)(4) | m(1)(5) | |
| s(n) map | \(s(1)(\lambda x . x+1)(899)\) | \(s(1)(\lambda x . x+1)(900)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1800 composite?
- ↑ Wolfram Alpha 1800's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1800 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers