| 1870 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 1800 | 1801 | 1802 | 1803 | 1804 | 1805 | 1806 | 1807 | 1808 | 1809 |
| 1810 | 1811 | 1812 | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 |
| 1820 | 1821 | 1822 | 1823 | 1824 | 1825 | 1826 | 1827 | 1828 | 1829 |
| 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836 | 1837 | 1838 | 1839 |
| 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1849 |
| 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | 1856 | 1857 | 1858 | 1859 |
| 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 |
| 1870 | 1871 | 1872 | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | 1879 |
| 1880 | 1881 | 1882 | 1883 | 1884 | 1885 | 1886 | 1887 | 1888 | 1889 |
| 1890 | 1891 | 1892 | 1893 | 1894 | 1895 | 1896 | 1897 | 1898 | 1899 |
1870 is the number following 1869 and preceding 1871.
Properties[]
- Its factors are 1, 2, 5, 10, 11, 17, 22, 34, 55, 85, 110, 170, 187, 374, 935 and 1870, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 1870 is an even number[5][6] .
- 1870 is an unhappy number.[7][8]
- 1870 is abundant.[9]
- Its prime factorization is 21 × 51 × 111 × 171.
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 43 ↑ 2 | ||
| Scientific notation | 1.87 x 103 | 1.871 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
| Copy notation | 18[2] | 19[2] | |
| Chained arrow notation | 43 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {43,2} | ||
| Fast-growing hierarchy | f2(7) | f2(8) | |
| Hardy hierarchy | Hω(935) | Hω(935) | |
| Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
| Hyper-E notation | E3.2718 | ||
| Hyper-E notation (non-10 base) | \(E[43]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 43{1}2 | ||
| Steinhaus-Moser Notation | 4[3] | 5[3] | |
| PlantStar's Debut Notation | [1] | [2] | |
| H* function | H(0) | H(0.1) | |
| Bashicu matrix system with respect to version 4 | (0)[43] | (0)[44] | |
| m(n) map | m(1)(4) | m(1)(5) | |
| s(n) map | \(s(1)(\lambda x . x+1)(934)\) | \(s(1)(\lambda x . x+1)(935)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1870 composite?
- ↑ Wolfram Alpha 1870's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1870 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers