| 1890 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 1800 | 1801 | 1802 | 1803 | 1804 | 1805 | 1806 | 1807 | 1808 | 1809 |
| 1810 | 1811 | 1812 | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 |
| 1820 | 1821 | 1822 | 1823 | 1824 | 1825 | 1826 | 1827 | 1828 | 1829 |
| 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836 | 1837 | 1838 | 1839 |
| 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1849 |
| 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | 1856 | 1857 | 1858 | 1859 |
| 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 |
| 1870 | 1871 | 1872 | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | 1879 |
| 1880 | 1881 | 1882 | 1883 | 1884 | 1885 | 1886 | 1887 | 1888 | 1889 |
| 1890 | 1891 | 1892 | 1893 | 1894 | 1895 | 1896 | 1897 | 1898 | 1899 |
1890 is the number following 1889 and preceding 1891.
Properties[]
- Its factors are 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 27, 30, 35, 42, 45, 54, 63, 70, 90, 105, 126, 135, 189, 210, 270, 315, 378, 630, 945 and 1890, making it a composite number.[1][2][3]
- 1890 is an even number[4][5] .
- 1890 is an unhappy number.[6][7]
- 1890 is abundant.[8]
- Its prime factorization is 21 × 33 × 51 × 71.
- 1890 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 43 ↑ 2 | ||
| Scientific notation | 1.89 x 103 | 1.891 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
| Copy notation | 18[2] | 19[2] | |
| Chained arrow notation | 43 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {43,2} | ||
| Fast-growing hierarchy | f2(7) | f2(8) | |
| Hardy hierarchy | Hω(945) | Hω(945) | |
| Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
| Hyper-E notation | E3.2765 | ||
| Hyper-E notation (non-10 base) | \(E[43]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 43{1}2 | ||
| Steinhaus-Moser Notation | 4[3] | 5[3] | |
| PlantStar's Debut Notation | [1] | [2] | |
| H* function | H(0) | H(0.1) | |
| Bashicu matrix system with respect to version 4 | (0)[43] | (0)[44] | |
| m(n) map | m(1)(4) | m(1)(5) | |
| s(n) map | \(s(1)(\lambda x . x+1)(944)\) | \(s(1)(\lambda x . x+1)(945)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1890 composite?
- ↑ Wolfram Alpha 1890's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 1890 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers