1919 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1900 | 1901 | 1902 | 1903 | 1904 | 1905 | 1906 | 1907 | 1908 | 1909 |
1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 |
1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 |
1930 | 1931 | 1932 | 1933 | 1934 | 1935 | 1936 | 1937 | 1938 | 1939 |
1940 | 1941 | 1942 | 1943 | 1944 | 1945 | 1946 | 1947 | 1948 | 1949 |
1950 | 1951 | 1952 | 1953 | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 |
1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
1919 is the number following 1918 and preceding 1920[1].
Properties[]
- Its factors are 1, 19, 101 and 1919, making it a composite number.[2][3][4] It is also a squarefree number.[5]
- 1919 is an odd number[6][7].
- 1919 is an unhappy number.[8][9]
- 1919 is deficient.[10]
- Its prime factorization is 191 × 1011.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 44 ↑ 2 | ||
Scientific notation | \(1.919\times10^3\) | \(1.92\times10^3\) | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 19[2] | 19[2] | |
Chained arrow notation | 44 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {44,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(959) | Hω(960) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.2831 | ||
Hyper-E notation (non-10 base) | \(E[44]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 44{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[43] | (0)[44] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(958)\) | \(s(1)(\lambda x . x+1)(959)\) |
Sources[]
- ↑ Wolfram Alpha 1919
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 1919 composite?
- ↑ Wolfram Alpha 1919's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 1919 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers