2040 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 |
2030 | 2031 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 |
2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | 2048 | 2049 |
2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 |
2060 | 2061 | 2062 | 2063 | 2064 | 2065 | 2066 | 2067 | 2068 | 2069 |
2070 | 2071 | 2072 | 2073 | 2074 | 2075 | 2076 | 2077 | 2078 | 2079 |
2080 | 2081 | 2082 | 2083 | 2084 | 2085 | 2086 | 2087 | 2088 | 2089 |
2090 | 2091 | 2092 | 2093 | 2094 | 2095 | 2096 | 2097 | 2098 | 2099 |
2,040 (two thousand forty) is the smallest number n, such that 2n cannot be stored on the TI-89 exact mode, according to Sbiis Saibian.[1] It can be simulated online.[2]
It is also the number of pips in a double-15 domino set.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 30, 34, 40, 51, 60, 68, 85, 102, 120, 136, 170, 204, 255, 340, 408, 510, 680, 1020 and 2040, making it a composite number.[3][4][5]
- 2040 is an even number[6][7] .
- 2040 is an unhappy number.[8][9]
- 2040 is abundant.[10]
- Its prime factorization is 23 × 31 × 51 × 171.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 45 ↑ 2 | ||
Scientific notation | 2.04 x 103 | 2.041 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 20[2] | 21[2] | |
Chained arrow notation | 45 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {45,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(1020) | Hω(1020) | |
Middle-growing hierarchy | m(ω,10) | m(ω,11) | |
Hyper-E notation | E3.3096 | ||
Hyper-E notation (non-10 base) | \(E[45]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 45{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0.1) | H(0.2) | |
Bashicu matrix system with respect to version 4 | (0)[45] | (0)[46] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(1019)\) | \(s(1)(\lambda x . x+1)(1020)\) |
Sources[]
- ↑ Sbiis Saibian. Sbiis Saibian's Ultimate Large Number List Retrieved 2024-10-06.
- ↑ TI-89 Online Simulator
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 2040 composite?
- ↑ Wolfram Alpha 2040's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 2040 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers